Division of Homeostatic Development, Department of Fundamental Neuroscience, National Institutes for Physiological Sciences, Okazaki, 444-8585, Japan.
Department of Physiological Sciences, Sokendai, Hayama, 240-0193, Japan.
J Physiol Sci. 2019 May;69(3):453-463. doi: 10.1007/s12576-018-00654-5. Epub 2019 Feb 13.
The neuronal K-Cl cotransporter KCC2 maintains a low intracellular Cl concentration and facilitates hyperpolarizing GABA receptor responses. KCC2 also plays a separate role in stabilizing and enhancing dendritic spines in the developing nervous system. Using a conditional transgenic mouse strategy, we examined whether overexpression of KCC2 enhances dendritic spines in the adult nervous system and characterized the effects on spine dynamics in the motor cortex in vivo during rotarod training. Mice overexpressing KCC2 showed significantly increased spine density in the apical dendrites of layer V pyramidal neurons, measured in vivo using two-photon imaging. During modest accelerated rotarod training, mice overexpressing KCC2 displayed enhanced spine formation rates, greater balancing skill at higher rotarod speeds and a faster rate of learning in this ability. Our results demonstrate that KCC2 enhances spine density and dynamics in the adult nervous system and suggest that KCC2 may play a role in experience-dependent synaptic plasticity.
神经元 K-Cl 协同转运蛋白 KCC2 维持细胞内低氯离子浓度,并促进 GABA 受体的超极化反应。KCC2 在发育中的神经系统中还具有稳定和增强树突棘的独立作用。利用条件性转基因小鼠策略,我们研究了 KCC2 的过表达是否会增强成年神经系统中的树突棘,并描述了在旋转棒训练过程中体内运动皮层中树突棘动力学的影响。使用双光子成像技术在体内测量,过表达 KCC2 的小鼠在第 V 层锥体神经元的树突顶端的棘突密度显著增加。在适度的加速旋转棒训练中,过表达 KCC2 的小鼠显示出更高的棘突形成率、在更高的旋转棒速度下更好的平衡技能以及更快的学习能力。我们的结果表明,KCC2 增强了成年神经系统中的棘突密度和动力学,并表明 KCC2 可能在经验依赖性突触可塑性中发挥作用。