Suppr超能文献

IgA1 铰链区簇集糖基化保真度由 GalNAc-T2 在半有序糖基化早期建立。

IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2.

机构信息

Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.

Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

Glycobiology. 2019 Jul 1;29(7):543-556. doi: 10.1093/glycob/cwz007.

Abstract

GalNAc-type O-glycans are often added to proteins post-translationally in a clustered manner in repeat regions of proteins, such as mucins and IgA1. Observed IgA1 glycosylation patterns show that glycans occur at similar sites with similar structures. It is not clear how the sites and number of glycans added to IgA1, or other proteins, can follow a conservative process. GalNAc-transferases initiate GalNAc-type glycosylation. In IgA nephropathy, an autoimmune disease, the sites and O-glycan structures of IgA1 hinge-region are altered, giving rise to a glycan autoantigen. To better understand how GalNAc-transferases determine sites and densities of clustered O-glycans, we used IgA1 hinge-region (HR) segment as a probe. Using LC-MS, we demonstrated a semi-ordered process of glycosylation by GalNAc-T2 towards the IgA1 HR. The catalytic domain was responsible for selection of four initial sites based on amino-acid sequence recognition. Both catalytic and lectin domains were involved in multiple second site-selections, each dependent on initial site-selection. Our data demonstrated that multiple start-sites and follow-up pathways were key to increasing the number of glycans added. The lectin domain predominately enhanced IgA1 HR glycan density by increasing synthesis pathway exploration by GalNAc-T2. Our data indicated a link between site-specific glycan addition and clustered glycan density that defines a mechanism of how conserved clustered O-glycosylation patterns and glycoform populations of IgA1 can be controlled by GalNAc-T2. Together, these findings characterized a correlation between glycosylation pathway diversity and glycosylation density, revealing mechanisms by which a single GalNAc-T isozyme can limit and define glycan heterogeneity in a disease-relevant context.

摘要

半乳糖胺型 O-聚糖通常在蛋白质的翻译后在蛋白质的重复区域中以聚集的方式添加到蛋白质中,例如粘蛋白和 IgA1。观察到的 IgA1 糖基化模式表明,糖基化发生在具有相似结构的相似位置。目前尚不清楚添加到 IgA1 或其他蛋白质的糖基化位点和数量如何遵循保守过程。半乳糖胺转移酶启动半乳糖胺型糖基化。在自身免疫性疾病 IgA 肾病中,IgA1 铰链区的位点和 O-聚糖结构发生改变,导致糖基化自身抗原的产生。为了更好地了解半乳糖胺转移酶如何确定聚集 O-聚糖的位点和密度,我们使用 IgA1 铰链区(HR)片段作为探针。使用 LC-MS,我们证明了半乳糖胺转移酶 2 对半乳糖胺型糖基化向 IgA1 HR 的半有序过程。催化结构域负责根据氨基酸序列识别选择四个初始位点。催化结构域和凝集素结构域都参与多个第二位点选择,每个选择都依赖于初始位点选择。我们的数据表明,多个起始位点和后续途径是增加添加糖基数量的关键。凝集素结构域主要通过增加半乳糖胺转移酶 2 的合成途径探索来增强 IgA1 HR 聚糖密度。我们的数据表明,特定位点的糖基化添加与聚集糖基密度之间存在联系,这定义了 GalNAc-T2 如何控制 IgA1 的保守聚集 O-糖基化模式和糖型群体的机制。总之,这些发现描述了糖基化途径多样性与糖基化密度之间的相关性,揭示了单个 GalNAc-T 同工酶如何在疾病相关环境中限制和定义聚糖异质性的机制。

相似文献

4
Naturally occurring structural isomers in serum IgA1 o-glycosylation.
J Proteome Res. 2012 Feb 3;11(2):692-702. doi: 10.1021/pr200608q. Epub 2011 Dec 29.
8
Enzymatic sialylation of IgA1 O-glycans: implications for studies of IgA nephropathy.
PLoS One. 2014 Jun 11;9(2):e99026. doi: 10.1371/journal.pone.0099026. eCollection 2014.
10
Clustered O-glycans of IgA1: defining macro- and microheterogeneity by use of electron capture/transfer dissociation.
Mol Cell Proteomics. 2010 Nov;9(11):2545-57. doi: 10.1074/mcp.M110.001834. Epub 2010 Sep 7.

引用本文的文献

1
Emerging Biochemical and Immunologic Mechanisms in the Pathogenesis of IgA Nephropathy.
Semin Nephrol. 2024 Sep;44(5):151565. doi: 10.1016/j.semnephrol.2025.151565. Epub 2025 Mar 13.
2
Pathogenesis of IgA nephropathy: Omics data inform glycomedicine.
Nephrology (Carlton). 2024 Sep;29 Suppl 2(Suppl 2):18-22. doi: 10.1111/nep.14350.
3
O-glycosylation of IgA1 and the pathogenesis of an autoimmune disease IgA nephropathy.
Glycobiology. 2024 Sep 30;34(11). doi: 10.1093/glycob/cwae060.
4
Racial heterogeneity of IgA1 hinge-region -glycoforms in patients with IgA nephropathy.
iScience. 2022 Sep 27;25(11):105223. doi: 10.1016/j.isci.2022.105223. eCollection 2022 Nov 18.
5
Immunoglobulin A Glycosylation and Its Role in Disease.
Exp Suppl. 2021;112:433-477. doi: 10.1007/978-3-030-76912-3_14.
6
Aberrantly Glycosylated IgA1 in IgA Nephropathy: What We Know and What We Don't Know.
J Clin Med. 2021 Aug 5;10(16):3467. doi: 10.3390/jcm10163467.
8
TLR7 in B cells promotes renal inflammation and Gd-IgA1 synthesis in IgA nephropathy.
JCI Insight. 2020 Jul 23;5(14):136965. doi: 10.1172/jci.insight.136965.

本文引用的文献

1
A molecular switch orchestrates enzyme specificity and secretory granule morphology.
Nat Commun. 2018 Aug 29;9(1):3508. doi: 10.1038/s41467-018-05978-9.
2
Serum galactose-deficient-IgA1 and IgG autoantibodies correlate in patients with IgA nephropathy.
PLoS One. 2018 Jan 11;13(1):e0190967. doi: 10.1371/journal.pone.0190967. eCollection 2018.
4
GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway.
PLoS Genet. 2017 Feb 10;13(2):e1006609. doi: 10.1371/journal.pgen.1006609. eCollection 2017 Feb.
5
Extrinsic Functions of Lectin Domains in O-N-Acetylgalactosamine Glycan Biosynthesis.
J Biol Chem. 2016 Dec 2;291(49):25339-25350. doi: 10.1074/jbc.M116.740795. Epub 2016 Oct 13.
6
IgA nephropathy.
Nat Rev Dis Primers. 2016 Feb 11;2:16001. doi: 10.1038/nrdp.2016.1.
7
The Origin and Activities of IgA1-Containing Immune Complexes in IgA Nephropathy.
Front Immunol. 2016 Apr 12;7:117. doi: 10.3389/fimmu.2016.00117. eCollection 2016.
9
New Insights into the Pathogenesis of IgA Nephropathy.
Kidney Dis (Basel). 2015 May;1(1):8-18. doi: 10.1159/000382134. Epub 2015 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验