Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
Glycobiology. 2019 Jul 1;29(7):543-556. doi: 10.1093/glycob/cwz007.
GalNAc-type O-glycans are often added to proteins post-translationally in a clustered manner in repeat regions of proteins, such as mucins and IgA1. Observed IgA1 glycosylation patterns show that glycans occur at similar sites with similar structures. It is not clear how the sites and number of glycans added to IgA1, or other proteins, can follow a conservative process. GalNAc-transferases initiate GalNAc-type glycosylation. In IgA nephropathy, an autoimmune disease, the sites and O-glycan structures of IgA1 hinge-region are altered, giving rise to a glycan autoantigen. To better understand how GalNAc-transferases determine sites and densities of clustered O-glycans, we used IgA1 hinge-region (HR) segment as a probe. Using LC-MS, we demonstrated a semi-ordered process of glycosylation by GalNAc-T2 towards the IgA1 HR. The catalytic domain was responsible for selection of four initial sites based on amino-acid sequence recognition. Both catalytic and lectin domains were involved in multiple second site-selections, each dependent on initial site-selection. Our data demonstrated that multiple start-sites and follow-up pathways were key to increasing the number of glycans added. The lectin domain predominately enhanced IgA1 HR glycan density by increasing synthesis pathway exploration by GalNAc-T2. Our data indicated a link between site-specific glycan addition and clustered glycan density that defines a mechanism of how conserved clustered O-glycosylation patterns and glycoform populations of IgA1 can be controlled by GalNAc-T2. Together, these findings characterized a correlation between glycosylation pathway diversity and glycosylation density, revealing mechanisms by which a single GalNAc-T isozyme can limit and define glycan heterogeneity in a disease-relevant context.
半乳糖胺型 O-聚糖通常在蛋白质的翻译后在蛋白质的重复区域中以聚集的方式添加到蛋白质中,例如粘蛋白和 IgA1。观察到的 IgA1 糖基化模式表明,糖基化发生在具有相似结构的相似位置。目前尚不清楚添加到 IgA1 或其他蛋白质的糖基化位点和数量如何遵循保守过程。半乳糖胺转移酶启动半乳糖胺型糖基化。在自身免疫性疾病 IgA 肾病中,IgA1 铰链区的位点和 O-聚糖结构发生改变,导致糖基化自身抗原的产生。为了更好地了解半乳糖胺转移酶如何确定聚集 O-聚糖的位点和密度,我们使用 IgA1 铰链区(HR)片段作为探针。使用 LC-MS,我们证明了半乳糖胺转移酶 2 对半乳糖胺型糖基化向 IgA1 HR 的半有序过程。催化结构域负责根据氨基酸序列识别选择四个初始位点。催化结构域和凝集素结构域都参与多个第二位点选择,每个选择都依赖于初始位点选择。我们的数据表明,多个起始位点和后续途径是增加添加糖基数量的关键。凝集素结构域主要通过增加半乳糖胺转移酶 2 的合成途径探索来增强 IgA1 HR 聚糖密度。我们的数据表明,特定位点的糖基化添加与聚集糖基密度之间存在联系,这定义了 GalNAc-T2 如何控制 IgA1 的保守聚集 O-糖基化模式和糖型群体的机制。总之,这些发现描述了糖基化途径多样性与糖基化密度之间的相关性,揭示了单个 GalNAc-T 同工酶如何在疾病相关环境中限制和定义聚糖异质性的机制。