Center for Pulmonary Vascular Biology and Medicine, Center for Metabolism and Mitochondrial Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (Q.Y., Y.-Y.T., Y.T., J.Z., V.N., M.K.C., J.P., W.S., J.S., M.R., M.S., N.K., T.S., M.Z., N.F., S.S., S.Y.C.).
Department of Pediatrics, Paracelsus Medical University Salzburg, Austria (K.B., J.M.).
Circulation. 2019 May 7;139(19):2238-2255. doi: 10.1161/CIRCULATIONAHA.118.035889.
Deficiencies of iron-sulfur (Fe-S) clusters, metal complexes that control redox state and mitochondrial metabolism, have been linked to pulmonary hypertension (PH), a deadly vascular disease with poorly defined molecular origins. BOLA3 (BolA Family Member 3) regulates Fe-S biogenesis, and mutations in BOLA3 result in multiple mitochondrial dysfunction syndrome, a fatal disorder associated with PH. The mechanistic role of BOLA3 in PH remains undefined.
In vitro assessment of BOLA3 regulation and gain- and loss-of-function assays were performed in human pulmonary artery endothelial cells using siRNA and lentiviral vectors expressing the mitochondrial isoform of BOLA3. Polymeric nanoparticle 7C1 was used for lung endothelium-specific delivery of BOLA3 siRNA oligonucleotides in mice. Overexpression of pulmonary vascular BOLA3 was performed by orotracheal transgene delivery of adeno-associated virus in mouse models of PH.
In cultured hypoxic pulmonary artery endothelial cells, lung from human patients with Group 1 and 3 PH, and multiple rodent models of PH, endothelial BOLA3 expression was downregulated, which involved hypoxia inducible factor-2α-dependent transcriptional repression via histone deacetylase 1-mediated histone deacetylation. In vitro gain- and loss-of-function studies demonstrated that BOLA3 regulated Fe-S integrity, thus modulating lipoate-containing 2-oxoacid dehydrogenases with consequent control over glycolysis and mitochondrial respiration. In contexts of siRNA knockdown and naturally occurring human genetic mutation, cellular BOLA3 deficiency downregulated the glycine cleavage system protein H, thus bolstering intracellular glycine content. In the setting of these alterations of oxidative metabolism and glycine levels, BOLA3 deficiency increased endothelial proliferation, survival, and vasoconstriction while decreasing angiogenic potential. In vivo, pharmacological knockdown of endothelial BOLA3 and targeted overexpression of BOLA3 in mice demonstrated that BOLA3 deficiency promotes histological and hemodynamic manifestations of PH. Notably, the therapeutic effects of BOLA3 expression were reversed by exogenous glycine supplementation.
BOLA3 acts as a crucial lynchpin connecting Fe-S-dependent oxidative respiration and glycine homeostasis with endothelial metabolic reprogramming critical to PH pathogenesis. These results provide a molecular explanation for the clinical associations linking PH with hyperglycinemic syndromes and mitochondrial disorders. These findings also identify novel metabolic targets, including those involved in epigenetics, Fe-S biogenesis, and glycine biology, for diagnostic and therapeutic development.
铁硫(Fe-S)簇的缺乏会导致氧化还原状态和线粒体代谢的紊乱,而这些与肺动脉高压(PH)有关,PH 是一种致命的血管疾病,其分子起源尚未明确。 BOLA3(BolA 家族成员 3)调节 Fe-S 的生物发生,而 BOLA3 的突变会导致多种线粒体功能障碍综合征,这是一种与 PH 相关的致命疾病。然而, BOLA3 在 PH 中的作用机制仍不清楚。
采用 siRNA 和表达线粒体同工型 BOLA3 的慢病毒载体,在人肺动脉内皮细胞中进行 BOLA3 调控的体外评估和获得性功能丧失及丧失功能检测。采用聚合物纳米颗粒 7C1 在小鼠体内进行 BOLA3 siRNA 寡核苷酸的肺内皮特异性传递。通过腺相关病毒在 PH 小鼠模型中进行肺血管的过表达。
在缺氧培养的肺动脉内皮细胞中,人 1 型和 3 型 PH 患者的肺组织、多种 PH 啮齿动物模型中,内皮 BOLA3 的表达均下调,这涉及通过组蛋白去乙酰化酶 1 介导的组蛋白去乙酰化作用,诱导缺氧诱导因子-2α 依赖的转录抑制。体外获得性功能丧失和丧失功能研究表明, BOLA3 调节 Fe-S 的完整性,从而调节含有硫辛酸的 2-氧酸脱氢酶,进而控制糖酵解和线粒体呼吸。在 siRNA 敲低和自然发生的人类遗传突变的情况下,细胞 BOLA3 的缺乏会下调甘氨酸裂解系统蛋白 H,从而增加细胞内甘氨酸的含量。在这些氧化代谢和甘氨酸水平改变的情况下, BOLA3 缺乏会增加内皮细胞的增殖、存活和血管收缩,同时降低血管生成潜能。在体内,通过药理学敲低内皮 BOLA3 和在小鼠中靶向过表达 BOLA3,证明 BOLA3 缺乏会促进 PH 的组织学和血流动力学表现。值得注意的是,外源性甘氨酸补充可以逆转 BOLA3 表达的治疗效果。
BOLA3 作为一个关键的连接点,将 Fe-S 依赖性氧化呼吸和甘氨酸稳态与内皮代谢重编程联系起来,而内皮代谢重编程对 PH 的发病机制至关重要。这些结果为将 PH 与高血糖症综合征和线粒体疾病相关联的临床关联提供了分子解释。这些发现还确定了新的代谢靶点,包括涉及表观遗传学、Fe-S 生物发生和甘氨酸生物学的靶点,为诊断和治疗的发展提供了依据。