Suppr超能文献

利用常规显微镜生成活细胞超分辨率电影揭示了构建先驱轴突的肌动蛋白动力学。

Generating intravital super-resolution movies with conventional microscopy reveals actin dynamics that construct pioneer axons.

机构信息

Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Development. 2019 Mar 8;146(5):dev171512. doi: 10.1242/dev.171512.

Abstract

Super-resolution microscopy is broadening our in-depth understanding of cellular structure. However, super-resolution approaches are limited, for numerous reasons, from utilization in longer-term intravital imaging. We devised a combinatorial imaging technique that combines deconvolution with stepwise optical saturation microscopy (DeSOS) to circumvent this issue and image cells in their native physiological environment. Other than a traditional confocal or two-photon microscope, this approach requires no additional hardware. Here, we provide an open-access application to obtain DeSOS images from conventional microscope images obtained at low excitation powers. We show that DeSOS can be used in time-lapse imaging to generate super-resolution movies in zebrafish. DeSOS was also validated in live mice. These movies uncover that actin structures dynamically remodel to produce a single pioneer axon in a 'top-down' scaffolding event. Further, we identify an F-actin population - stable base clusters - that orchestrate that scaffolding event. We then identify that activation of Rac1 in pioneer axons destabilizes stable base clusters and disrupts pioneer axon formation. The ease of acquisition and processing with this approach provides a universal technique for biologists to answer questions in living animals.

摘要

超分辨率显微镜正在加深我们对细胞结构的深入理解。然而,由于多种原因,超分辨率方法在长期活体成像中的应用受到限制。我们设计了一种组合成像技术,将反卷积与逐步光学饱和显微镜(DeSOS)相结合,以解决这个问题,并在细胞的自然生理环境中对其进行成像。除了传统的共聚焦或双光子显微镜外,这种方法不需要额外的硬件。在这里,我们提供了一个开放获取的应用程序,用于从低激发功率下获得的传统显微镜图像中获取 DeSOS 图像。我们表明,DeSOS 可以用于延时成像,以在斑马鱼中生成超分辨率电影。DeSOS 也在活体小鼠中得到了验证。这些电影揭示了肌动蛋白结构动态重塑,以在“自上而下”的支架事件中产生单个先驱轴突。此外,我们确定了一个肌动蛋白群体——稳定的基础簇——协调该支架事件。然后,我们发现先驱轴突中 Rac1 的激活会使稳定的基础簇不稳定,并破坏先驱轴突的形成。这种方法易于获取和处理,为生物学家在活体动物中回答问题提供了一种通用技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2965/6432666/693e49f63136/develop-146-171512-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验