Laboratory of Systems Neurobiology and Medicine, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
Laboratory of Systems Neurobiology and Medicine, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
Trends Cell Biol. 2017 Jul;27(7):515-526. doi: 10.1016/j.tcb.2017.02.003. Epub 2017 Mar 7.
Actin filaments and associated proteins undergo wave-like movement in various cell types. Recent studies with cutting-edge analyses, including live-cell imaging, biophysical monitoring and manipulation, and mathematical modeling, have highlighted roles of 'actin waves' in cellular protrusion, polarization, and migration. The prevailing models to explain the wave-like dynamics of actin filaments involve an activator-inhibitor mechanism. In addition, axonal actin waves migrate by means of directional assembly and disassembly of membrane-anchored actin filaments, and thus represent a new type of machinery that translocates their component molecules to the cell edge. Here, we review recent advances in our understanding of the generation, mobility, and functions of actin waves, and discuss how actin waves may self-organize into the molecular machinery underlying cell morphogenesis.
肌动蛋白丝和相关蛋白在各种细胞类型中呈现波状运动。最近的研究采用了前沿分析技术,包括活细胞成像、生物物理监测和操作以及数学建模,强调了“肌动蛋白波”在细胞突出、极化和迁移中的作用。目前的模型通过激活剂-抑制剂机制来解释肌动蛋白丝的波状动力学。此外,轴突肌动蛋白波通过膜锚定肌动蛋白丝的定向组装和拆卸进行迁移,因此代表了一种将其组成分子转运到细胞膜边缘的新型机械装置。在这里,我们综述了对肌动蛋白波的产生、迁移和功能的理解的最新进展,并讨论了肌动蛋白波如何自我组织成细胞形态发生的基础分子机械装置。