Suppr超能文献

开发用于自动肌电图模式分类的深度神经网络。

Development of a deep neural network for automated electromyographic pattern classification.

机构信息

Gold Coast Orthopaedics Research, Engineering & Education Alliance (GCORE), Menzies Health Institute Queensland, Griffith University, QLD 4222, Australia

School of Allied Health Sciences, Griffith University, QLD 4222, Australia.

出版信息

J Exp Biol. 2019 Mar 4;222(Pt 5):jeb198101. doi: 10.1242/jeb.198101.

Abstract

Determining the signal quality of surface electromyography (sEMG) recordings is time consuming and requires the judgement of trained observers. An automated procedure to evaluate sEMG quality would streamline data processing and reduce time demands. This paper compares the performance of two supervised and three unsupervised artificial neural networks (ANNs) in the evaluation of sEMG quality. Manually classified sEMG recordings from various lower-limb muscles during motor tasks were used to train (=28,000), test performance (=12,000) and evaluate accuracy (=47,000) of the five ANNs in classifying signals into four categories. Unsupervised ANNs demonstrated a 30-40% increase in classification accuracy (>98%) compared with supervised ANNs. AlexNet demonstrated the highest accuracy (99.55%) with negligible false classifications. The results indicate that sEMG quality evaluation can be automated via an ANN without compromising human-like classification accuracy. This classifier will be publicly available and will be a valuable tool for researchers and clinicians using electromyography.

摘要

确定表面肌电图 (sEMG) 记录的信号质量既耗时又需要经过训练的观察者进行判断。一种自动评估 sEMG 质量的方法可以简化数据处理并减少时间需求。本文比较了两种监督和三种无监督人工神经网络 (ANN) 在评估 sEMG 质量方面的性能。使用在运动任务中来自各种下肢肌肉的手动分类 sEMG 记录来训练 (=28,000)、测试性能 (=12,000) 和评估五个 ANN 对信号分类为四个类别的准确性 (=47,000)。与监督 ANN 相比,无监督 ANN 的分类准确性提高了 30-40% (>98%)。AlexNet 的准确率最高(99.55%),假分类极少。结果表明,可以通过 ANN 自动进行 sEMG 质量评估,而不会影响类似人类的分类准确性。该分类器将公开提供,这将是研究人员和使用肌电图的临床医生的宝贵工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验