Nasseri Azadeh, Akhundov Riad, Bryant Adam L, Lloyd David G, Saxby David J
Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia.
Centre for Health, Exercise & Sports Medicine, University of Melbourne, Melbourne, VIC 3010, Australia.
Bioengineering (Basel). 2023 Mar 17;10(3):369. doi: 10.3390/bioengineering10030369.
Neuromusculoskeletal models often require three-dimensional (3D) body motions, ground reaction forces (GRF), and electromyography (EMG) as input data. Acquiring these data in real-world settings is challenging, with barriers such as the cost of instruments, setup time, and operator skills to correctly acquire and interpret data. This study investigated the consequences of limiting EMG and GRF data on modelled anterior cruciate ligament (ACL) forces during a drop-land-jump task in late-/post-pubertal females. We compared ACL forces generated by a reference model (i.e., EMG-informed neural mode combined with 3D GRF) to those generated by an EMG-informed with only vertical GRF, static optimisation with 3D GRF, and static optimisation with only vertical GRF. Results indicated ACL force magnitude during landing (when ACL injury typically occurs) was significantly overestimated if only vertical GRF were used for either EMG-informed or static optimisation neural modes. If 3D GRF were used in combination with static optimisation, ACL force was marginally overestimated compared to the reference model. None of the alternative models maintained rank order of ACL loading magnitudes generated by the reference model. Finally, we observed substantial variability across the study sample in response to limiting EMG and GRF data, indicating need for methods incorporating subject-specific measures of muscle activation patterns and external loading when modelling ACL loading during dynamic motor tasks.
神经肌肉骨骼模型通常需要三维(3D)身体运动、地面反作用力(GRF)和肌电图(EMG)作为输入数据。在现实环境中获取这些数据具有挑战性,存在诸如仪器成本、设置时间以及正确获取和解释数据所需的操作员技能等障碍。本研究调查了在青春期后期/青春期后的女性进行落地跳任务期间,限制肌电图和地面反作用力数据对模拟前交叉韧带(ACL)力的影响。我们将一个参考模型(即结合了3D地面反作用力的肌电图驱动神经模型)产生的ACL力与仅使用垂直地面反作用力的肌电图驱动模型、结合3D地面反作用力的静态优化模型以及仅使用垂直地面反作用力的静态优化模型产生的ACL力进行了比较。结果表明,如果在肌电图驱动或静态优化神经模型中仅使用垂直地面反作用力,那么在着陆期间(通常在此期间发生ACL损伤)的ACL力大小会被显著高估。如果将3D地面反作用力与静态优化结合使用,与参考模型相比,ACL力会被略微高估。没有一个替代模型能够保持参考模型所产生的ACL负荷大小的排序。最后,我们观察到在整个研究样本中,由于限制了肌电图和地面反作用力数据,结果存在很大差异,这表明在对动态运动任务期间的ACL负荷进行建模时,需要采用纳入特定受试者肌肉激活模式和外部负荷测量的方法。