Suppr超能文献

走下查尔尼的阶梯:机器学习与计算气候科学的后 Dennard 时代

Climbing down Charney's ladder: machine learning and the post-Dennard era of computational climate science.

作者信息

Balaji V

机构信息

Princeton University and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA.

Institute Pierre-Simon Laplace, Paris, France.

出版信息

Philos Trans A Math Phys Eng Sci. 2021 Apr 5;379(2194):20200085. doi: 10.1098/rsta.2020.0085. Epub 2021 Feb 15.

Abstract

The advent of digital computing in the 1950s sparked a revolution in the science of weather and climate. Meteorology, long based on extrapolating patterns in space and time, gave way to computational methods in a decade of advances in numerical weather forecasting. Those same methods also gave rise to computational climate science, studying the behaviour of those same numerical equations over intervals much longer than weather events, and changes in external boundary conditions. Several subsequent decades of exponential growth in computational power have brought us to the present day, where models ever grow in resolution and complexity, capable of mastery of many small-scale phenomena with global repercussions, and ever more intricate feedbacks in the Earth system. The current juncture in computing, seven decades later, heralds an end to what is called Dennard scaling, the physics behind ever smaller computational units and ever faster arithmetic. This is prompting a fundamental change in our approach to the simulation of weather and climate, potentially as revolutionary as that wrought by John von Neumann in the 1950s. One approach could return us to an earlier era of pattern recognition and extrapolation, this time aided by computational power. Another approach could lead us to insights that continue to be expressed in mathematical equations. In either approach, or any synthesis of those, it is clearly no longer the steady march of the last few decades, continuing to add detail to ever more elaborate models. In this prospectus, we attempt to show the outlines of how this may unfold in the coming decades, a new harnessing of physical knowledge, computation and data. This article is part of the theme issue 'Machine learning for weather and climate modelling'.

摘要

20世纪50年代数字计算技术的出现引发了气象与气候科学领域的一场革命。长期以来基于时空模式外推的气象学,在数值天气预报取得进展的十年间,让位于计算方法。同样这些方法还催生了计算气候科学,该学科研究那些数值方程在比天气事件长得多的时间间隔内的行为,以及外部边界条件的变化。随后几十年计算能力呈指数级增长,将我们带到了今天,此时模型的分辨率和复杂度不断提高,能够掌握许多具有全球影响的小尺度现象,以及地球系统中越来越复杂的反馈。七十年后的当前计算节点预示着所谓的 Dennard 缩放比例的终结,Dennard 缩放比例是更小计算单元和更快运算背后的物理原理。这正促使我们在天气和气候模拟方法上发生根本性变革,其变革程度可能与20世纪50年代约翰·冯·诺依曼带来的变革一样具有革命性。一种方法可能会让我们回到模式识别和外推的早期时代,这次借助计算能力的辅助。另一种方法可能会引导我们获得仍用数学方程表达的见解。无论采用哪种方法,或者是两者的任何综合,显然都不再是过去几十年那种持续为越来越精细的模型添加细节的稳步发展。在本展望中,我们试图勾勒出未来几十年这可能如何展开,即对物理知识、计算和数据的新应用。本文是“用于天气和气候建模的机器学习”主题特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4da/7898135/81d03220a059/rsta20200085-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验