Suppr超能文献

时间细胞间通信的简化模型:解释线性增加的时间不精确性

A Simplified Model of Communication Between Time Cells: Accounting for the Linearly Increasing Timing Imprecision.

作者信息

Zeki Mustafa, Balcı Fuat

机构信息

Department of Mathematics, College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait.

Department of Psychology, Koç University, Istanbul, Turkey.

出版信息

Front Comput Neurosci. 2019 Jan 29;12:111. doi: 10.3389/fncom.2018.00111. eCollection 2018.

Abstract

Many organisms can time intervals flexibly on average with high accuracy but substantial variability between the trials. One of the core psychophysical features of interval timing functions relates to the signatures of this timing variability; for a given individual, the standard deviation of timed responses/time estimates is nearly proportional to their central tendency (scalar property). Many studies have aimed at elucidating the neural basis of interval timing based on the neurocomputational principles in a fashion that would explain the scalar property. Recent experimental evidence shows that there is indeed a specialized neural system for timekeeping. This system, referred to as the "time cells," is composed of a group of neurons that fire sequentially as a function of elapsed time. Importantly, the time interval between consecutively firing time cell ensembles has been shown to increase with more elapsed time. However, when the subjective time is calculated by adding the distributions of time intervals between these sequentially firing time cell ensembles, the standard deviation would be compressed by the square root function. In light of this information the question becomes, "How should the signaling between the sequentially firing time cell ensembles be for the resulting variability to increase linearly with time as required by the scalar property?" We developed a simplified model of time cells that offers a mechanism for the synaptic communication of the sequentially firing neurons to address this ubiquitous property of interval timing. The model is composed of a single layer of time cells formulated in the form of integrate-and-fire neurons with feed-forward excitatory connections. The resulting behavior is simple neural wave activity. When this model is simulated with noisy conductances, the standard deviation of the time cell spike times increases proportionally to the mean of the spike-times. We demonstrate that this statistical property of the model outcomes is robustly observed even when the values of the key model parameters are varied.

摘要

许多生物体平均能够灵活地以高精度对时间间隔进行计时,但各次试验之间存在显著差异。间隔计时功能的核心心理物理学特征之一与这种计时变异性的特征有关;对于给定个体,计时反应/时间估计的标准差几乎与其中心趋势成正比(标量特性)。许多研究旨在根据神经计算原理阐明间隔计时的神经基础,以解释标量特性。最近的实验证据表明,确实存在一个专门的计时神经系统。这个系统被称为“时间细胞”,由一组神经元组成,它们随着时间的流逝依次放电。重要的是,连续放电的时间细胞集合之间的时间间隔已被证明会随着时间的增加而增加。然而,当通过将这些依次放电的时间细胞集合之间的时间间隔分布相加来计算主观时间时,标准差将通过平方根函数被压缩。鉴于此信息,问题就变成了:“为了使产生的变异性如标量特性所要求的那样随时间线性增加,依次放电的时间细胞集合之间的信号传递应该是怎样的?”我们开发了一个简化的时间细胞模型,该模型提供了一种依次放电神经元的突触通信机制,以解决间隔计时的这一普遍特性。该模型由单层时间细胞组成,这些时间细胞以具有前馈兴奋性连接的积分发放神经元的形式构建。产生的行为是简单的神经波活动。当用有噪声的电导对该模型进行模拟时,时间细胞尖峰时间的标准差与尖峰时间的平均值成正比增加。我们证明,即使关键模型参数的值发生变化,该模型结果的这一统计特性也能得到有力观察。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ccb/6361830/8f6dcc8d7e09/fncom-12-00111-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验