Suppr超能文献

基于中国大学MOOC学习行为数据的MOOC评分算法研究

Study on MOOC scoring algorithm based on Chinese University MOOC learning behavior data.

作者信息

Luo Yong, Zhou Guochang, Li Jianping, Xiao Xiao

机构信息

College of Science, National University of Defense Technology, 410073, China.

Department of Information Technology, Hunan Police Academy, Changsha, Hunan, China.

出版信息

Heliyon. 2018 Nov 30;4(11):e00960. doi: 10.1016/j.heliyon.2018.e00960. eCollection 2018 Nov.

Abstract

Existing online learning evaluation methods do not accurately reflect learning effects, which only considers test and assignment scores. A comprehensive evaluation algorithm is proposed in this paper based on the big data of learning behavior. The conversion ratio is taken into account, which is defined by information entropy theory. The algorithm comprehensively considers the learner's multiple learning behaviors, such as viewing videos, doing exercises, taking exams, participating in discussions. The new evaluation algorithm can help learners understand the learning state and maintain their interest.

摘要

现有的在线学习评估方法不能准确反映学习效果,因为这些方法仅考虑测试和作业成绩。本文基于学习行为大数据提出了一种综合评估算法。该算法考虑了转换率,转换率由信息熵理论定义。该算法综合考虑了学习者的多种学习行为,如观看视频、做练习、参加考试、参与讨论等。新的评估算法可以帮助学习者了解自己的学习状态并保持学习兴趣。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a961/6286268/e9d6d341ab72/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验