Suppr超能文献

基于注意力 LSTM 的具有时间身份感知能力的 SSD。

Temporally Identity-Aware SSD With Attentional LSTM.

出版信息

IEEE Trans Cybern. 2020 Jun;50(6):2674-2686. doi: 10.1109/TCYB.2019.2894261. Epub 2019 Feb 11.

Abstract

Temporal object detection has attracted significant attention, but most popular detection methods cannot leverage rich temporal information in videos. Very recently, many algorithms have been developed for video detection task, yet very few approaches can achieve real-time online object detection in videos. In this paper, based on the attention mechanism and convolutional long short-term memory (ConvLSTM), we propose a temporal single-shot detector (TSSD) for real-world detection. Distinct from the previous methods, we take aim at temporally integrating pyramidal feature hierarchy using ConvLSTM, and design a novel structure, including a low-level temporal unit as well as a high-level one for multiscale feature maps. Moreover, we develop a creative temporal analysis unit, namely, attentional ConvLSTM, in which a temporal attention mechanism is specially tailored for background suppression and scale suppression, while a ConvLSTM integrates attention-aware features across time. An association loss and a multistep training are designed for temporal coherence. Besides, an online tubelet analysis (OTA) is exploited for identification. Our framework is evaluated on ImageNet VID dataset and 2DMOT15 dataset. Extensive comparisons on the detection and tracking capability validate the superiority of the proposed approach. Consequently, the developed TSSD-OTA achieves a fast speed and an overall competitive performance in terms of detection and tracking. Finally, a real-world maneuver is conducted for underwater object grasping.

摘要

时间目标检测引起了广泛关注,但大多数流行的检测方法无法利用视频中的丰富时间信息。最近,已经开发出许多用于视频检测任务的算法,但很少有方法可以实现视频中的实时在线目标检测。在本文中,我们基于注意力机制和卷积长短期记忆(ConvLSTM),为现实世界的检测提出了一种时间单镜头检测器(TSSD)。与以往的方法不同,我们旨在使用 ConvLSTM 对金字塔特征层次结构进行时间上的集成,并设计了一种新颖的结构,包括用于多尺度特征图的低水平时间单元和高水平时间单元。此外,我们开发了一种创造性的时间分析单元,即注意 ConvLSTM,其中时间注意力机制专门用于背景抑制和尺度抑制,而 ConvLSTM 则跨时间集成注意感知特征。设计了关联损失和多步训练来实现时间一致性。此外,还利用在线小管分析(OTA)进行识别。我们的框架在 ImageNet VID 数据集和 2DMOT15 数据集上进行了评估。在检测和跟踪能力方面的广泛比较验证了所提出方法的优越性。因此,所提出的 TSSD-OTA 在检测和跟踪方面实现了快速速度和整体竞争力。最后,进行了水下物体抓取的实际操作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验