Suppr超能文献

基于弱监督卷积 LSTM 的腹腔镜视频中工具跟踪方法。

Weakly supervised convolutional LSTM approach for tool tracking in laparoscopic videos.

机构信息

ICube, University of Strasbourg, CNRS, IHU, Strasbourg, France.

University Hospital of Strasbourg, IRCAD, IHU, Strasbourg, France.

出版信息

Int J Comput Assist Radiol Surg. 2019 Jun;14(6):1059-1067. doi: 10.1007/s11548-019-01958-6. Epub 2019 Apr 9.

Abstract

PURPOSE

Real-time surgical tool tracking is a core component of the future intelligent operating room (OR), because it is highly instrumental to analyze and understand the surgical activities. Current methods for surgical tool tracking in videos need to be trained on data in which the spatial positions of the tools are manually annotated. Generating such training data is difficult and time-consuming. Instead, we propose to use solely binary presence annotations to train a tool tracker for laparoscopic videos.

METHODS

The proposed approach is composed of a CNN + Convolutional LSTM (ConvLSTM) neural network trained end to end, but weakly supervised on tool binary presence labels only. We use the ConvLSTM to model the temporal dependencies in the motion of the surgical tools and leverage its spatiotemporal ability to smooth the class peak activations in the localization heat maps (Lh-maps).

RESULTS

We build a baseline tracker on top of the CNN model and demonstrate that our approach based on the ConvLSTM outperforms the baseline in tool presence detection, spatial localization, and motion tracking by over [Formula: see text], [Formula: see text], and [Formula: see text], respectively.

CONCLUSIONS

In this paper, we demonstrate that binary presence labels are sufficient for training a deep learning tracking model using our proposed method. We also show that the ConvLSTM can leverage the spatiotemporal coherence of consecutive image frames across a surgical video to improve tool presence detection, spatial localization, and motion tracking.

摘要

目的

实时手术工具跟踪是未来智能手术室(OR)的核心组成部分,因为它对于分析和理解手术活动非常有帮助。目前视频中手术工具跟踪的方法需要在手动注释工具空间位置的数据集上进行训练。生成此类训练数据既困难又耗时。相反,我们建议仅使用二进制存在注释来训练腹腔镜视频的工具跟踪器。

方法

所提出的方法由一个端到端训练的 CNN + 卷积长短期记忆(ConvLSTM)神经网络组成,但仅进行弱监督,仅使用工具二进制存在标签。我们使用 ConvLSTM 来模拟手术工具运动中的时间依赖性,并利用其时空能力来平滑本地化热图(Lh-maps)中的类峰激活。

结果

我们在 CNN 模型之上构建了一个基线跟踪器,并证明我们基于 ConvLSTM 的方法在工具存在检测、空间定位和运动跟踪方面分别优于基线,分别提高了[Formula: see text]、[Formula: see text]和[Formula: see text]。

结论

在本文中,我们证明了使用我们提出的方法,二进制存在标签足以训练深度学习跟踪模型。我们还表明,ConvLSTM 可以利用手术视频中连续图像帧之间的时空一致性来提高工具存在检测、空间定位和运动跟踪。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验