Department of Mechatronics, Optics and Mechanical Engineering Informatics, Budapest University of Technology and Economics, Budapest, Hungary.
PLoS One. 2019 Feb 14;14(2):e0212319. doi: 10.1371/journal.pone.0212319. eCollection 2019.
A typical optical based gait analysis laboratory uses expensive stereophotogrammetric motion capture systems. The study aims to propose and validate an affordable gait analysis method using augmented reality (AR) markers with a single action camera. Image processing software calculates the position and orientation of the AR markers. Anatomical landmark calibration is applied on the subject to calibrate each of the anatomical points with respect to their corresponding AR markers. This way, anatomical points are tracked through AR markers using homogeneous coordinate transformations, and the further processing of gait analysis is identical with conventional solutions. The proposed system was validated on nine participants of varying age using a conventional motion capture system on simultaneously measured treadmill gait trials on 2, 3 and 4.5 km/h walking speeds. Coordinates of the virtual anatomical points were compared using the Bland-Altman analysis. Spatial-temporal gait parameters (step length, stride length, walking base, cadence, pelvis range of motion) and angular gait parameters (range of motion of knee, hip and pelvis angles) were compared between measurement systems by RMS error and Bland-Altman analysis. The proposed method shows some differences in the raw coordinates of virtually tracked anatomical landmarks and gait parameters compared to the reference system. RMS errors of spatial parameters were below 23 mm, while the angular range of motion RMS errors varies from 2.55° to 6.73°. Some of these differences (e.g. knee angle range of motion) is comparable to previously reported differences between commercial motion capture systems and gait variability. The proposed method can be a very cheap gait analysis solution, but precision is not guaranteed for every aspect of gait analysis using the currently exemplified implementation of the AR marker tracking approach.
一个典型的基于光学的步态分析实验室使用昂贵的立体摄影运动捕捉系统。本研究旨在提出并验证一种使用具有单个动作摄像机的增强现实(AR)标记的经济实惠的步态分析方法。图像处理软件计算 AR 标记的位置和方向。对受试者进行解剖学标志校准,以校准每个解剖点相对于其相应的 AR 标记。这样,通过同质坐标变换跟踪 AR 标记的解剖点,并且步态分析的进一步处理与传统解决方案相同。在所提出的系统中,使用传统的运动捕捉系统在跑步机上同时测量以 2、3 和 4.5 公里/小时的行走速度进行的步态试验,对来自不同年龄的九名参与者进行了验证。使用 Bland-Altman 分析比较虚拟解剖点的坐标。通过均方根误差和 Bland-Altman 分析比较测量系统之间的时空步态参数(步长、步长、步行基础、步频、骨盆运动范围)和角步态参数(膝关节、髋关节和骨盆角度的运动范围)。与参考系统相比,所提出的方法在虚拟跟踪解剖学标志和步态参数的原始坐标上显示出一些差异。空间参数的 RMS 误差低于 23mm,而角运动范围的 RMS 误差从 2.55°变化到 6.73°。这些差异中的一些(例如,膝关节角度运动范围)与之前报道的商用运动捕捉系统和步态变异性之间的差异相当。所提出的方法可以是一种非常廉价的步态分析解决方案,但使用当前示例实现的 AR 标记跟踪方法,不能保证步态分析的每个方面的精度。