Valiunas D, Jomantiene R, Ivanauskas A, Abraitis R, Staniene G, Zhao Y, Davis R E
Phytovirus Laboratory Molecular Plant Pathology Group, Institute of Botany, Žaliuju ežeru 49, Vilnius LT-08406, Lithuania.
Eukaryote Genetic Engineering Laboratory, Institute of Biotechnology, V. Graičiūno 8, Vilnius LT-02241, Lithuania.
Plant Dis. 2009 May;93(5):550. doi: 10.1094/PDIS-93-5-0550B.
During July 2007, sweet (Prunus avium) and sour cherry (P. cerasus) trees exhibiting disease symptoms suggestive of possible phytoplasma infection were observed in a large orchard in the Kaunas Region of Lithuania. Samples of leaf tissue were collected from 13 sweet cherry trees that were affected by a decline disease (designated cherry decline, ChD) characterized by symptoms that included leaf reddening and premature leaf drop and two sour cherry trees exhibiting proliferation of branches and nonseasonal flowering. To assess the diseased trees for phytoplasma infection, DNA was extracted with a Genomic DNA Purification Kit (Fermentas, Vilnius, Lithuania) and used as template in nested PCRs, primed by phytoplasma universal primer pairs P1/P7 and R16F2n/R16R2 for amplification of 16S ribosomal (r) DNA sequences (1,2). The 1.2-kbp DNA sequences amplified from all 15 trees were subjected to restriction fragment length polymorphism (RFLP) analyses with AluI, MseI, KpnI, HhaI, HaeIII, HpaII, RsaI, HinfI, TaqI, Sau3AI, and BfaI. The collective profiles indicated that DNAs were derived from two different phytoplasmas. One of them, designated ChD phytoplasma, was found in 11 sweet cherry trees and two sour cherry trees and tentatively classified as a member of new subgroup designated 16SrIII-T in 16S rDNA RFLP group 16SrIII (X-disease phytoplasma group). It was observed that the ChD phytoplasma caused different symptoms in sweet and sour cherry. The amplified ChD phytoplasma 16S rDNA was cloned in Escherichia coli, sequenced, and the sequence deposited in the GenBank database (Accession No. FJ231728). The ChD phytoplasma 16S rDNA shared 98.4 and 98.6% sequence identity with the 16S rDNAs from stone fruit-infecting phytoplasmas associated with western X-disease (GenBank Accession No. L04682) and Canada X-disease (GenBank Accession No. L33733), respectively, indicating that the three strains are closely related. Interestingly, the ChD phytoplasma 16S rDNA shared 99.8% sequence identity with 16S rDNA from one operon (rrnB, GenBank Accession No. AF370120) from a phytoplasma previously found to be associated with dandelion virescence (DanVir) disease in Lithuania. The operon rrnA (GenBank Accession No. AF370119) shared 99.3% sequence identity (2). The high similarity of the ChD 16S rRNA gene sequence to that of DanVir rrnB suggests the possibility that ChD and DanVir may belong to a single phytoplasma species and that dandelion is possibly an alternate host of ChD phytoplasma. The other phytoplasma, found in two sweet cherry trees, was classified in subgroup 16SrI-B of 16S rDNA RFLP group 16SrI ('Candidatus Phytoplasma asteris' and related strains) and was designated cherry proliferation phytoplasma (GenBank Accession No. FJ231729). Thus, in Europe, cherry may be affected by diseases associated with phytoplasmas belonging to groups 16SrI, 16SrIII, 16SrX, and 16SrXII (3,4). The infections by diverse phytoplasma strains and species underscore the need for production of phytoplasma-free planting stock and for intensified research to reduce ecological and economic impacts of these phytoplasmas. References: (1) D. E. Gunderson and I.-M. Lee. Phytopathol. Mediterr. 35:144, 1996. (2) R. Jomantiene et al. Eur. J. Plant Pathol. 108:507, 2002. (3) S. Paltrinieri et al. Acta Hortic. 550:365, 2001. (4) D. Valiunas et al. J. Plant Pathol. 91:71. 2009.
2007年7月期间,在立陶宛考纳斯地区的一个大型果园中,观察到甜樱桃(欧洲甜樱桃)和酸樱桃树上出现了疑似植原体感染的病害症状。从13棵受衰退病(称为樱桃衰退病,ChD)影响的甜樱桃树上采集了叶片组织样本,这些树的症状包括叶片变红和过早落叶;还从两棵表现出枝条增生和非季节性开花的酸樱桃树上采集了样本。为了评估患病树木是否感染植原体,使用基因组DNA纯化试剂盒(立陶宛维尔纽斯Fermentas公司)提取DNA,并将其用作巢式PCR的模板,以植原体通用引物对P1/P7和R16F2n/R16R2进行引物设计,用于扩增16S核糖体(r)DNA序列(1,2)。对从所有15棵树上扩增得到的1.2-kbp DNA序列,用AluI、MseI、KpnI、HhaI、HaeIII、HpaII、RsaI、HinfI、TaqI、Sau3AI和BfaI进行限制性片段长度多态性(RFLP)分析。总体图谱表明DNA来自两种不同的植原体。其中一种,称为ChD植原体,在11棵甜樱桃树和两棵酸樱桃树中被发现,并暂时归类为16S rDNA RFLP组16SrIII(X病植原体组)中一个新亚组16SrIII-T的成员。观察到ChD植原体在甜樱桃和酸樱桃上引起不同症状。扩增得到的ChD植原体16S rDNA在大肠杆菌中克隆、测序,并将序列存入GenBank数据库(登录号FJ231728)。ChD植原体16S rDNA与来自与西部X病相关的核果感染植原体(GenBank登录号L04682)和加拿大X病(GenBank登录号L33733)的16S rDNA序列分别具有98.4%和98.6%的序列同一性,表明这三个菌株密切相关。有趣的是,ChD植原体16S rDNA与先前在立陶宛发现的与蒲公英变绿(DanVir)病相关的植原体的一个操纵子(rrnB,GenBank登录号AF370120)的16S rDNA序列具有99.8%的序列同一性。操纵子rrnA(GenBank登录号AF370119)具有99.3%的序列同一性(2)。ChD 16S rRNA基因序列与DanVir rrnB的高度相似性表明,ChD和DanVir可能属于同一植原体物种,并且蒲公英可能是ChD植原体的替代宿主。在两棵甜樱桃树中发现的另一种植原体,被归类为16S rDNA RFLP组16SrI(‘Ca. Phytoplasma asteris’及相关菌株)的16SrI-B亚组,并称为樱桃增生植原体(GenBank登录号FJ231729)。因此,在欧洲,樱桃可能受到属于16SrI、16SrIII、16SrX和16SrXII组的植原体相关病害的影响(3,4)。多种植原体菌株和物种的感染突出了生产无植原体繁殖材料以及加强研究以减少这些植原体的生态和经济影响的必要性。参考文献:(1)D. E. Gunderson和I.-M. Lee。《地中海植物病理学》35:144,1996年。(2)R. Jomantiene等人。《欧洲植物病理学杂志》108:507,2002年。(3)S. Paltrinieri等人。《园艺学报》550:365,2001年。(4)D. Valiunas等人。《植物病理学杂志》91:71,2009年。