Dolezal W, Tiwari K, Kemerait R, Kichler J, Sapp P, Pataky J
Pioneer Hi-Bred International, Inc., Johnston, IA 50131.
Pioneer Hi-Bred International, Inc., Cairo, GA 39828.
Plant Dis. 2009 Jun;93(6):676. doi: 10.1094/PDIS-93-6-0676A.
Southern rust, caused by Puccinia polysora Underw., occurs frequently on corn (Zea mays) grown in subtropical or tropical regions. When conditions are favorable, southern rust also occurs in temperate climates of the central and southern United States although the fungus does not survive on corn crop residue and must be introduced to temperate regions each growing season. Several single, dominant, resistance genes, designated as Rpp genes, convey hypersensitive, chlorotic fleck reactions when challenged with avirulent isolates of P. polysora (1). Rpp resistance prevents or limits the formation of uredinia. The Rpp9 gene has been used successfully in North America in the past 20 years to control southern rust even though the gene has been ineffective in other parts of the world (e.g., Africa and Hawaii) because of the prevalence of virulent races. During the past 3 years, Rpp9 virulence has occurred in the western hemisphere (e.g., Brazil, Mexico, Nebraska, and Texas), but prior to 2008, uredinia were not observed east of the Mississippi River on corn with the Rpp9 gene. A few uredinia were observed on corn with the Rpp9 gene in eastern Nebraska in 2006 and near Victoria, TX in 2007 (W. Dolezal, personal observation). In July of 2008, a virulent isolate of P. polysora was confirmed from Grady County, GA on corn lines with the Rpp9 gene including the original source of this resistance gene, Boesman yellow flint, which is PI 186208 (3). In August of 2008, isolates of P. polysora were collected from severely infected corn hybrids with Rpp9 grown in Macon County, GA. Rust samples from hybrids without Rpp genes also were collected in Burke County, GA where Rpp-resistant corn was asymptomatic. In greenhouse trials, corn lines with and without the Rpp9 gene were inoculated with urediniospores from collections from Burke and Macon counties and Illinois. Rust infection types (1) were scored 18 to 25 days after inoculation. The Macon County isolate produced type 1 and 2 infections (small uredinia surrounded by necrotic or chlorotic tissue) on Oh43Rpp9 and W64aRpp9 and type 4 infections (large, sporulating uredinia) on two versions of a commercial hybrid with and without the Rpp9 gene and on Va59 (which carries an Rpp gene different from Rpp9). The Burke County isolate and an isolate from Illinois collected in 2001 produced type 0 infections (chlorotic flecks) on all of these lines except the non-Rpp version of the commercial hybrid which had a type 4 reaction. To our knowledge, Rpp9-virulent isolates of P. polysora have not been reported from the continental United States for nearly 50 years. In the late 1950s and early 1960s, A. L. Robert (2) collected isolates of P. polysora from throughout the world and observed multiple races on a set of host differentials that is no longer available. A. L. Robert's collection included an isolate from Georgia that was virulent on PI 186208. Commercial hybrids containing the Rpp9 gene may continue to be resistant throughout most of North America if previously common Rpp9-avirulent isolates of P. polysora are prevalent, but those hybrids should be carefully monitored for infection by newly introduced Rpp9-virulent isolates. References: (1) A. L. Hooker. Page 207 in: The Cereal Rusts. Vol. II. Academic Press, San Diego, 1985. (2) A. L. Robert. Phytopathology 52:1010, 1962. (3) A. J. Ullstrup. Phytopathology 55:425, 1965.
南方锈病由多堆柄锈菌(Puccinia polysora Underw.)引起,在亚热带或热带地区种植的玉米(Zea mays)上频繁发生。在适宜条件下,美国中部和南部的温带气候地区也会出现南方锈病,不过该真菌无法在玉米作物残体上存活,每个生长季都必须引入温带地区。几个单一的显性抗性基因,命名为Rpp基因,在受到无毒力的多堆柄锈菌分离株攻击时会产生过敏、褪绿斑点反应(1)。Rpp抗性可防止或限制夏孢子堆的形成。在过去20年里,Rpp9基因在北美已成功用于防治南方锈病,尽管由于毒性小种的流行,该基因在世界其他地区(如非洲和夏威夷)效果不佳。在过去3年里,Rpp9毒性已在西半球出现(如巴西、墨西哥、内布拉斯加州和得克萨斯州),但在2008年之前,在密西西比河以东携带Rpp9基因的玉米上未观察到夏孢子堆。2006年在内布拉斯加州东部以及2007年在得克萨斯州维多利亚附近,在携带Rpp9基因的玉米上观察到了一些夏孢子堆(W. Dolezal,个人观察)。2008年7月,在佐治亚州格雷迪县,从携带Rpp9基因的玉米品系上确认了一株有毒力的多堆柄锈菌分离株,包括该抗性基因的原始来源博斯曼黄硬粒玉米,即PI 186208(3)。2008年8月,从佐治亚州梅肯县严重感染的携带Rpp9基因的玉米杂交种上采集了多堆柄锈菌分离株。在佐治亚州伯克县也采集了不含Rpp基因的杂交种的锈病样本,那里携带Rpp抗性的玉米没有症状。在温室试验中,用从伯克县、梅肯县以及伊利诺伊州采集的夏孢子对有和没有Rpp9基因的玉米品系进行接种。接种后18至25天对锈病感染类型(1)进行评分。梅肯县分离株在Oh43Rpp9和W64aRpp9上产生1型和2型感染(小夏孢子堆被坏死或褪绿组织包围),在有和没有Rpp9基因的两个商业杂交种版本以及Va59(携带与Rpp9不同的Rpp基因)上产生4型感染(大的、产孢的夏孢子堆)。伯克县分离株和2001年从伊利诺伊州采集的分离株在所有这些品系上产生0型感染(褪绿斑点),但不含Rpp基因的商业杂交种版本有4型反应。据我们所知,近50年来美国大陆尚未报道过多堆柄锈菌的Rpp9毒性分离株。在20世纪50年代末和60年代初,A. L. 罗伯特(2)从世界各地采集了多堆柄锈菌分离株,并在一组现已不再使用的寄主鉴别品种上观察到多个小种。A. L. 罗伯特的采集样本包括一株来自佐治亚州的对PI 186208有毒力的分离株。如果以前常见的多堆柄锈菌Rpp9无毒力分离株仍然普遍存在,含有Rpp9基因的商业杂交种在北美大部分地区可能仍具抗性,但应仔细监测这些杂交种是否受到新引入的Rpp9有毒力分离株的感染。参考文献:(1)A. L. 胡克。载于:《谷物锈病》第二卷。学术出版社,圣地亚哥,1985年,第207页。(2)A. L. 罗伯特。植物病理学52:1010,1962年。(3)A. J. 乌尔斯特鲁普。植物病理学55:425,1965年。