EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200, Tours, France.
UMR 1253, iBrain, University of Tours, INSERM, Tours, France.
BMC Genet. 2019 Feb 14;20(1):17. doi: 10.1186/s12863-019-0719-y.
Both classes of transposable elements (DNA and RNA) are tightly regulated at the transcriptional level leading to the inactivation of transposition via epigenetic mechanisms. Due to the high copies number of these elements, the hypothesis has emerged that their regulation can coordinate a regulatory network of genes. Herein, we investigated whether transposition regulation of HsMar1, a human DNA transposon, differs in presence or absence of endogenous HsMar1 copies. In the case where HsMar1 transposition is regulated, the number of repetitive DNA sequences issued by HsMar1 and distributed in the human genome makes HsMar1 a good candidate to regulate neighboring gene expression by epigenetic mechanisms.
A recombinant active HsMar1 copy was inserted in HeLa (human) and CHO (hamster) cells and its genomic excision monitored. We show that HsMar1 excision is blocked in HeLa cells, whereas CHO cells are competent to promote HsMar1 excision. We demonstrate that de novo HsMar1 insertions in HeLa cells (human) undergo rapid silencing by cytosine methylation and apposition of H3K9me3 marks, whereas de novo HsMar1 insertions in CHO cells (hamster) are not repressed and enriched in H3K4me3 modifications. The overall analysis of HsMar1 endogenous copies in HeLa cells indicates that neither full-length endogenous inactive copies nor their Inverted Terminal Repeats seem to be specifically silenced, and are, in contrast, devoid of epigenetic marks. Finally, the setmar gene, derived from HsMar1, presents H3K4me3 modifications as expected for a human housekeeping gene.
Our work highlights that de novo and old HsMar1 are not similarly regulated by epigenetic mechanisms. Old HsMar1 are generally detected as lacking epigenetic marks, irrespective their localisation relative to the genes. Considering the putative existence of a network associating HsMar1 old copies and SETMAR, two non-mutually exclusive hypotheses are proposed: active and inactive HsMar1 copies are not similarly regulated or/and regulations concern only few loci (and few genes) that cannot be detected at the whole genome level.
两类转座元件(DNA 和 RNA)在转录水平受到严格调控,导致通过表观遗传机制使转座失活。由于这些元件的高拷贝数,出现了这样一种假设,即它们的调控可以协调基因的调控网络。在此,我们研究了人类 DNA 转座子 HsMar1 的转座调控是否在存在或不存在内源性 HsMar1 拷贝时有所不同。如果 HsMar1 转座受到调控,那么由 HsMar1 产生并分布在人类基因组中的重复 DNA 序列的数量使得 HsMar1 成为通过表观遗传机制调节邻近基因表达的良好候选者。
将重组活性 HsMar1 拷贝插入 HeLa(人)和 CHO(仓鼠)细胞中,并监测其基因组切除。我们表明 HsMar1 切除在 HeLa 细胞中受阻,而 CHO 细胞能够促进 HsMar1 切除。我们证明,HeLa 细胞(人)中新的 HsMar1 插入物通过胞嘧啶甲基化和 H3K9me3 标记的并列迅速沉默,而 CHO 细胞(仓鼠)中新的 HsMar1 插入物不受抑制,并富含 H3K4me3 修饰。对 HeLa 细胞中 HsMar1 内源性拷贝的全面分析表明,全长内源性失活拷贝或其反向末端重复序列似乎都没有被特异性沉默,相反,它们没有表观遗传标记。最后,setmar 基因来源于 HsMar1,表现出 H3K4me3 修饰,正如预期的人类管家基因一样。
我们的工作强调了新的和旧的 HsMar1 不能通过表观遗传机制相似地调控。旧的 HsMar1 通常被检测为缺乏表观遗传标记,无论它们在基因附近的位置如何。考虑到 HsMar1 旧拷贝和 SETMAR 之间可能存在网络,提出了两个非相互排斥的假设:活性和非活性 HsMar1 拷贝不能相似地调控或/和调控仅涉及少数(和少数)基因,而这些基因不能在整个基因组水平上检测到。