Miskey Csaba, Papp Balázs, Mátés Lajos, Sinzelle Ludivine, Keller Heiko, Izsvák Zsuzsanna, Ivics Zoltán
Max Delbrück Center for Molecular Medicine, Robert Rössle Str 10, Berlin, Germany.
Mol Cell Biol. 2007 Jun;27(12):4589-600. doi: 10.1128/MCB.02027-06. Epub 2007 Apr 2.
Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage approximately 50 million years ago. Although Hsmar1 elements are inactive due to mutational damage, one particular copy of the transposase gene has apparently been under selection. This transposase coding region is part of the SETMAR gene, in which a histone methylatransferase SET domain is fused to an Hsmar1 transposase domain. A phylogenetic approach was taken to reconstruct the ancestral Hsmar1 transposase gene, which we named Hsmar1-Ra. The Hsmar1-Ra transposase efficiently mobilizes Hsmar1 transposons by a cut-and-paste mechanism in human cells and zebra fish embryos. Hsmar1-Ra can also mobilize short inverted-repeat transposable elements (MITEs) related to Hsmar1 (MiHsmar1), thereby establishing a functional relationship between an Hsmar1 transposase source and these MITEs. MiHsmar1 excision is 2 orders of magnitude more efficient than that of long elements, thus providing an explanation for their high copy numbers. We show that the SETMAR protein binds and introduces single-strand nicks into Hsmar1 inverted-repeat sequences in vitro. Pathway choices for DNA break repair were found to be characteristically different in response to transposon cleavage mediated by Hsmar1-Ra and SETMAR in vivo. Whereas nonhomologous end joining plays a dominant role in repairing excision sites generated by the Hsmar1-Ra transposase, DNA repair following cleavage by SETMAR predominantly follows a homology-dependent pathway. The novel transposon system can be a useful tool for genome manipulations in vertebrates and for investigations into the transpositional dynamics and the contributions of these elements to primate genome evolution.
Hsmar1是人类水手转座子两个亚家族之一,是一个古老的元件,大约在5000万年前进入灵长类基因组谱系。尽管由于突变损伤,Hsmar1元件处于无活性状态,但转座酶基因的一个特定拷贝显然一直处于选择之中。这个转座酶编码区是SETMAR基因的一部分,其中一个组蛋白甲基转移酶SET结构域与一个Hsmar1转座酶结构域融合。采用系统发育方法重建了祖先Hsmar1转座酶基因,我们将其命名为Hsmar1-Ra。Hsmar1-Ra转座酶通过剪切粘贴机制在人类细胞和斑马鱼胚胎中有效地动员Hsmar1转座子。Hsmar1-Ra还可以动员与Hsmar1相关的短反向重复转座元件(MITEs,即MiHsmar1),从而在Hsmar1转座酶来源与这些MITEs之间建立功能关系。MiHsmar1的切除效率比长元件高两个数量级,从而解释了它们的高拷贝数。我们表明,SETMAR蛋白在体外与Hsmar1反向重复序列结合并引入单链切口。发现在体内,响应于由Hsmar1-Ra和SETMAR介导的转座子切割,DNA断裂修复的途径选择具有显著差异。虽然非同源末端连接在修复由Hsmar1-Ra转座酶产生的切除位点中起主导作用,但SETMAR切割后的DNA修复主要遵循同源依赖性途径。这种新型转座子系统可以成为脊椎动物基因组操作以及研究这些元件的转座动力学及其对灵长类基因组进化贡献的有用工具。