University of Trento, Centre for Integrative Biology, Trento, 38123, Italy.
The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, 38068, Italy.
Sci Rep. 2019 Feb 14;9(1):2076. doi: 10.1038/s41598-018-38223-w.
Escherichia coli have developed one of the most efficient regulatory response mechanisms to phosphate starvation. The machinery involves a cascade with a two-component system (TCS) that relays the external signal to the genetic circuit, resulting in a feedback response. Achieving a quantitative understanding of this system has implications in synthetic biology and biotechnology, for example, in applications for wastewater treatment. To this aim, we present a computational model and experimental results with a detailed description of the TCS, consisting of PhoR and PhoB, together with the mechanisms of gene expression. The model is parameterised within the feasible range, and fitted to the dynamic response of our experimental data on PhoB as well as PhoA, the product of this network that is used in alkaline phosphatase production. Deterministic and stochastic simulations with our model predict the regulation dynamics in higher external phosphate concentrations while reproducing the experimental observations. In a cycle of simulations and experimental verification, our model predicts and explores phenotypes with various synthetic promoter designs that can optimise the inorganic phosphate intake in E. coli. Sensitivity analysis demonstrates that the Pho-controlled genes have a significant influence over the phosphate response. Together with experimental findings, our model should thus provide insights for the investigations on engineering new sensors and regulators for living technologies.
大肠杆菌已经开发出了一种最有效的应对磷酸盐饥饿的调控反应机制。该机制涉及一个级联反应,其中包括一个双组分系统(TCS),将外部信号传递到遗传回路,从而产生反馈响应。对该系统进行定量理解在合成生物学和生物技术方面具有重要意义,例如在废水处理等应用中。为此,我们提出了一个计算模型和实验结果,详细描述了 TCS,包括 PhoR 和 PhoB,以及基因表达的机制。该模型在可行范围内进行了参数化,并拟合了我们关于 PhoB 以及 PhoA(该网络的产物,用于碱性磷酸酶生产)的实验数据的动态响应。我们的模型进行确定性和随机模拟,可以预测在较高外部磷酸盐浓度下的调控动态,同时再现实验观察结果。在模拟和实验验证的循环中,我们的模型预测并探索了具有各种合成启动子设计的表型,这些设计可以优化大肠杆菌中的无机磷酸盐摄取。敏感性分析表明,Pho 控制的基因对磷酸盐反应有重要影响。结合实验结果,我们的模型应该为工程新的传感器和调控器以用于生命技术的研究提供深入的见解。