Suppr超能文献

DNA 结合位点和缓慢解离动力学在基于滴定的振荡器中的作用。

Role of DNA binding sites and slow unbinding kinetics in titration-based oscillators.

作者信息

Karapetyan Sargis, Buchler Nicolas E

机构信息

Department of Physics, Duke University, Durham, North Carolina 27708, USA.

Center for Genomic & Computational Biology, Durham, North Carolina 27710, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062712. doi: 10.1103/PhysRevE.92.062712. Epub 2015 Dec 22.

Abstract

Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising from the small number of molecules involved in gene regulation. One of the strongest sources of stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter in the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator titration and repressor titration to understand the key parameters that are important for oscillations and for overcoming binary noise. We show that the rate of unbinding from the DNA, despite traditionally being considered a fast parameter, needs to be slow to broaden the space of oscillatory solutions. The addition of multiple, independent DNA binding sites further expands the oscillatory parameter space for the repressor-titration oscillator and lengthens the period of both oscillators. This effect is a combination of increased effective delay of the unbinding kinetics due to multiple binding sites and increased promoter ultrasensitivity that is specific for repression. We then use stochastic simulation to show that multiple binding sites increase the coherence of oscillations by mitigating the binary noise. Slow values of DNA unbinding rate are also effective in alleviating molecular noise due to the increased distance from the bifurcation point. Our work demonstrates how the number of DNA binding sites and slow unbinding kinetics, which are often omitted in biophysical models of gene circuits, can have a significant impact on the temporal and stochastic dynamics of genetic oscillators.

摘要

遗传振荡器,如生物钟,不断受到基因调控中涉及的少量分子产生的分子噪声的干扰。随机性最强的来源之一是二元噪声,它源于调节蛋白与染色体DNA中启动子的结合。在本研究中,我们聚焦于基于激活剂滴定和阻遏剂滴定的两种最小振荡器,以了解对振荡和克服二元噪声至关重要的关键参数。我们表明,尽管传统上认为从DNA上解离的速率是一个快速参数,但它需要缓慢才能拓宽振荡解的空间。添加多个独立的DNA结合位点进一步扩展了阻遏剂滴定振荡器的振荡参数空间,并延长了两个振荡器的周期。这种效应是由于多个结合位点导致的解离动力学有效延迟增加以及阻遏特异性的启动子超敏感性增加的综合结果。然后,我们使用随机模拟表明,多个结合位点通过减轻二元噪声增加了振荡的相干性。由于与分岔点的距离增加,DNA解离速率的缓慢值在减轻分子噪声方面也很有效。我们的工作证明了基因回路生物物理模型中经常被忽略的DNA结合位点数量和缓慢的解离动力学如何对遗传振荡器的时间和随机动力学产生重大影响。

相似文献

1
Role of DNA binding sites and slow unbinding kinetics in titration-based oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062712. doi: 10.1103/PhysRevE.92.062712. Epub 2015 Dec 22.
3
Feedback loops interlocked at competitive binding sites amplify and facilitate genetic oscillations.
J Theor Biol. 2017 Sep 7;428:56-64. doi: 10.1016/j.jtbi.2017.06.005. Epub 2017 Jun 15.
4
A stochastic model for circadian rhythms from coupled ultradian oscillators.
Theor Biol Med Model. 2007 Jan 9;4:1. doi: 10.1186/1742-4682-4-1.
5
Nonspecific transcription factor binding can reduce noise in the expression of downstream proteins.
Phys Biol. 2015 Aug 12;12(5):055002. doi: 10.1088/1478-3975/12/5/055002.
6
8
Circadian rhythms and molecular noise.
Chaos. 2006 Jun;16(2):026110. doi: 10.1063/1.2211767.
10
Stochastic resonances in a distributed genetic broadcasting system: the NFB/IB paradigm.
J R Soc Interface. 2018 Jan;15(138). doi: 10.1098/rsif.2017.0809.

引用本文的文献

1
From homogeneity to heterogeneity: Refining stochastic simulations of gene regulation.
Comput Struct Biotechnol J. 2025 Jan 15;27:411-422. doi: 10.1016/j.csbj.2025.01.004. eCollection 2025.
2
Simplifications and approximations in a single-gene circuit modeling.
Sci Rep. 2024 May 31;14(1):12498. doi: 10.1038/s41598-024-63265-8.
3
Transcription factor competition facilitates self-sustained oscillations in single gene genetic circuits.
PLoS Comput Biol. 2023 Sep 29;19(9):e1011525. doi: 10.1371/journal.pcbi.1011525. eCollection 2023 Sep.
4
Diverse role of decoys on emergence and precision of oscillations in a biomolecular clock.
Biophys J. 2021 Dec 21;120(24):5564-5574. doi: 10.1016/j.bpj.2021.11.013. Epub 2021 Nov 11.
6
Non-monotonic auto-regulation in single gene circuits.
PLoS One. 2019 May 2;14(5):e0216089. doi: 10.1371/journal.pone.0216089. eCollection 2019.
9
Stochastic resonances in a distributed genetic broadcasting system: the NFB/IB paradigm.
J R Soc Interface. 2018 Jan;15(138). doi: 10.1098/rsif.2017.0809.
10
Self-consistent theory of transcriptional control in complex regulatory architectures.
PLoS One. 2017 Jul 7;12(7):e0179235. doi: 10.1371/journal.pone.0179235. eCollection 2017.

本文引用的文献

3
On the dephasing of genetic oscillators.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2391-6. doi: 10.1073/pnas.1323433111. Epub 2014 Jan 27.
4
Promoters maintain their relative activity levels under different growth conditions.
Mol Syst Biol. 2013 Oct 29;9:701. doi: 10.1038/msb.2013.59.
5
Caveats in modeling a common motif in genetic circuits.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062706. doi: 10.1103/PhysRevE.87.062706. Epub 2013 Jun 17.
6
The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch.
Nat Cell Biol. 2013 May;15(5):519-25. doi: 10.1038/ncb2737. Epub 2013 Apr 28.
7
Synergistic and tunable human gene activation by combinations of synthetic transcription factors.
Nat Methods. 2013 Mar;10(3):239-42. doi: 10.1038/nmeth.2361. Epub 2013 Feb 3.
8
Deterministic versus stochastic models for circadian rhythms.
J Biol Phys. 2002 Dec;28(4):637-53. doi: 10.1023/A:1021286607354.
9
Influence of decoys on the noise and dynamics of gene expression.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041920. doi: 10.1103/PhysRevE.86.041920. Epub 2012 Oct 31.
10
A mechanism for robust circadian timekeeping via stoichiometric balance.
Mol Syst Biol. 2012;8:630. doi: 10.1038/msb.2012.62.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验