Suppr超能文献

通过采取跨领域措施消除与健康相关的污名化,促进健康公平。

Advancing health equity through cross-cutting approaches to health-related stigma.

机构信息

Epilepsy Division, Department of Neurology, University of Rochester, Rochester, NY, USA.

Chikankata Epilepsy Care Team, Chikankata Hospital, Mazabuka, Zambia.

出版信息

BMC Med. 2019 Feb 15;17(1):40. doi: 10.1186/s12916-019-1282-0.

Abstract

Health-related stigma remains a major barrier to improving health and well-being for vulnerable populations around the world. This collection on stigma research and global health emerged largely as a result of a 2017 meeting on the "The Science of Stigma Reduction" sponsored by the US National Institutes of Health (NIH). An overwhelming consensus at the meeting was reached. It was determined that for stigma research to advance further, particularly to achieve effective and scalable stigma reduction interventions, the discipline of stigma research must evolve beyond disease-specific investigations and frameworks and move toward more unified theories of stigma that transcend individual conditions. This introduction reflects on the value of taking this cross-cutting approach from both a historical and current perspective, then briefly summarizes the span of articles. Collectively, the authors apply theory, frameworks, tools, interventions and evaluations to the breadth of stigma across conditions and vulnerabilities. They present a tactical argument for a more ethical, participatory, applied and transdisciplinary line of attack on health-related stigma, alongside promoting the dignity and voice of people living with stigmatized conditions. The collection homepage can be found at http://www.biomedcentral.com/collections/stigma .

摘要

健康相关的污名仍然是改善世界各地弱势群体健康和福祉的主要障碍。本论文集主要是由美国国立卫生研究院(NIH)于 2017 年主办的关于“减少污名的科学”会议的成果。会议达成了压倒性的共识。与会者认为,为了进一步推进污名研究,特别是为了实现有效和可扩展的污名减少干预措施,污名研究学科必须超越特定疾病的调查和框架,朝着超越个体状况的更统一的污名理论发展。这篇引言从历史和当前的角度反思了采用这种跨领域方法的价值,然后简要总结了文章的范围。作者们将理论、框架、工具、干预措施和评估应用于各种条件和脆弱性下的污名。他们提出了一个更具伦理、参与性、应用和跨学科的策略,以应对与健康相关的污名,同时也倡导了受污名化状况影响的人们的尊严和声音。本论文集的主页可以在 http://www.biomedcentral.com/collections/stigma 找到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验