Department of Energy, Politecnico di Torino, Torino, Italy.
Nanoscale. 2019 Feb 28;11(9):3979-3992. doi: 10.1039/c8nr08782b.
Suspensions of nanoparticles (NPs) in aqueous solutions hold promise in many research fields, including energy applications, water desalination, and nanomedicine. The ability to tune NP interactions, and thereby to modulate the NP self-assembly process, holds the key to rationally synthesize NP suspensions. However, traditional models obtained by coupling the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory of NP interactions, or suitable modifications of it, with the kinetic theory of colloidal aggregation are inadequate to precisely model NP self-assembly because they neglect hydration forces and discrete-size effects predominant at the nanoscale. By synergistically blending molecular dynamics and stochastic dynamics simulations with continuum theories, we develop a multi-scale (MS) model, which is able to accurately predict suspension stability, timescales for NP aggregation, and macroscopic properties (e.g., the thermal conductivity) of bare and surfactant-coated NP suspensions, in good agreement with the experimental data. Our results enable the formulation of design rules for engineering NP aqueous suspensions in a wide range of applications.
纳米粒子 (NPs) 在水溶液中的悬浮液在许多研究领域都有应用前景,包括能源应用、海水淡化和纳米医学。调节 NP 相互作用的能力,从而调节 NP 自组装过程,是合理合成 NP 悬浮液的关键。然而,通过将 NP 相互作用的 DLVO(德加古因、朗道、维尔威和奥弗贝克)理论或其合适的修正与胶体聚集的动理论相结合而获得的传统模型,不足以精确地模拟 NP 自组装,因为它们忽略了在纳米尺度上占主导地位的水合力和离散尺寸效应。通过将分子动力学和随机动力学模拟与连续体理论协同融合,我们开发了一种多尺度 (MS) 模型,该模型能够准确预测悬浮液稳定性、NP 聚集的时间尺度以及裸 NP 和表面活性剂包覆 NP 悬浮液的宏观性质(例如热导率),与实验数据吻合良好。我们的研究结果为在广泛的应用中设计工程 NP 水悬浮液提供了设计规则。