Cappabianca Roberta, De Angelis Paolo, Cardellini Annalisa, Chiavazzo Eliodoro, Asinari Pietro
Department of Energy "Galileo Ferraris", Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129Torino, Italy.
Istituto Nazionale di Ricerca Metrologica, Strada Delle Cacce 91, 10135Torino, Italy.
ACS Omega. 2022 Nov 10;7(46):42292-42303. doi: 10.1021/acsomega.2c05218. eCollection 2022 Nov 22.
Gold nanoparticles (AuNPs) have received great attention in a number of fields ranging from the energy sector to biomedical applications. As far as the latter is concerned, due to rapid renal clearance and a short lifetime in blood, AuNPs are often encapsulated in a poly(lactic--glycolic acid) (PLGA) matrix owing to its biocompatibility and biodegradability. A better understanding of the PLGA polymers on the AuNP surface is crucial to improve and optimize the above encapsulation process. In this study, we combine a number of computational approaches to explore the adsorption mechanisms of PLGA oligomers on a Au crystalline NP and to rationalize the PLGA coating process toward a more efficient design of the NP shape. Atomistic simulations supported by a recently developed unsupervised machine learning scheme show the temporal evolution and behavior of PLGA clusterization by tuning the oligomer concentration in aqueous solutions. Then, a detailed surface coverage analysis coupled with free energy landscape calculations sheds light on the anisotropic nature of PLGA adsorption onto the AuNP. Our results prove that the NP shape and topology may address and privilege specific sites of adsorption, such as the Au {1 1 1} crystal planes in selected NP samples. The modeling-based investigation suggested in this article offers a solid platform to guide the design of coated NPs.
金纳米颗粒(AuNPs)在从能源领域到生物医学应用的众多领域中都受到了极大关注。就生物医学应用而言,由于AuNPs在肾脏中的快速清除以及在血液中的短寿命,它们通常被包裹在聚乳酸 - 乙醇酸共聚物(PLGA)基质中,这是因为PLGA具有生物相容性和生物可降解性。更好地理解AuNP表面的PLGA聚合物对于改进和优化上述包裹过程至关重要。在本研究中,我们结合多种计算方法来探索PLGA低聚物在金晶体NP上的吸附机制,并使PLGA包覆过程合理化,以实现对NP形状更有效的设计。由最近开发的无监督机器学习方案支持的原子模拟通过调节水溶液中的低聚物浓度展示了PLGA聚集的时间演变和行为。然后,详细的表面覆盖率分析与自由能景观计算相结合,揭示了PLGA在AuNP上吸附的各向异性性质。我们的结果证明,NP的形状和拓扑结构可能决定并优先选择特定的吸附位点,例如所选NP样品中的Au{1 1 1}晶面。本文提出的基于建模的研究为指导包覆NP的设计提供了一个坚实的平台。