Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625 Hannover, Germany.
Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625 Hannover, Germany; Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.
J Hepatol. 2019 Jun;70(6):1082-1092. doi: 10.1016/j.jhep.2019.01.033. Epub 2019 Feb 13.
BACKGROUND & AIMS: Hepatitis C virus (HCV) infection causes chronic liver disease. Antivirals have been developed and cure infection. However, resistance can emerge and salvage therapies with alternative modes of action could be useful. Several licensed drugs have emerged as HCV entry inhibitors and are thus candidates for drug repurposing. We aimed to dissect their mode of action, identify improved derivatives and determine their viral targets.
HCV entry inhibition was tested for a panel of structurally related compounds, using chimeric viruses representing diverse genotypes, in addition to viruses containing previously determined resistance mutations. Chemical modeling and synthesis identified improved derivatives, while generation of susceptible and non-susceptible chimeric viruses pinpointed E1 determinants of compound sensitivity.
Molecules of the diphenylpiperazine, diphenylpiperidine, phenothiazine, thioxanthene, and cycloheptenepiperidine chemotypes inhibit HCV infection by interfering with membrane fusion. These molecules and a novel p-methoxy-flunarizine derivative with improved efficacy preferentially inhibit genotype 2 viral strains. Viral residues within a central hydrophobic region of E1 (residues 290-312) control susceptibility. At the same time, viral features in this region also govern pH-dependence of viral membrane fusion.
Small molecules from different chemotypes related to flunarizine preferentially inhibit HCV genotype 2 membrane fusion. A hydrophobic region proximal to the putative fusion loop controls sensitivity to these drugs and the pH range of membrane fusion. An algorithm considering viral features in this region predicts viral sensitivity to membrane fusion inhibitors. Resistance to flunarizine correlates with more relaxed pH requirements for fusion.
This study describes diverse compounds that act as HCV membrane fusion inhibitors. It defines viral properties that determine sensitivity to these molecules and thus provides information to identify patients that may benefit from treatment with membrane fusion inhibitors.
丙型肝炎病毒(HCV)感染可导致慢性肝病。已开发出抗病毒药物来治愈感染。然而,可能会出现耐药性,因此具有替代作用模式的挽救疗法可能会很有用。几种已获得许可的药物已作为 HCV 进入抑制剂出现,因此是药物再利用的候选药物。我们旨在剖析其作用模式,确定改进的衍生物,并确定其病毒靶标。
使用代表多种基因型的嵌合病毒以及包含先前确定的耐药突变的病毒,测试了一系列结构相关化合物的 HCV 进入抑制作用。化学建模和合成确定了改进的衍生物,而敏感和非敏感嵌合病毒的产生则确定了化合物敏感性的 E1 决定因素。
二苯哌嗪、二苯哌啶、吩噻嗪、噻吨和环庚烯哌啶化学型的分子通过干扰膜融合来抑制 HCV 感染。这些分子和一种新型对甲氧基-氟尼嗪衍生物具有更好的功效,优先抑制基因型 2 病毒株。E1 中一个中央疏水区(残基 290-312)内的病毒残基控制着易感性。同时,该区域内的病毒特征也控制着病毒膜融合的 pH 依赖性。
与氟尼嗪相关的不同化学型的小分子优先抑制 HCV 基因型 2 的膜融合。靠近假定融合环的近端疏水区控制着对这些药物的敏感性以及膜融合的 pH 范围。考虑到该区域内病毒特征的算法预测了对膜融合抑制剂的病毒敏感性。对氟尼嗪的耐药性与融合所需的更宽松 pH 要求相关。
本研究描述了作为 HCV 膜融合抑制剂的多种化合物。它定义了决定对这些分子敏感性的病毒特性,从而为识别可能受益于膜融合抑制剂治疗的患者提供了信息。