Suppr超能文献

光子烧结纳米银导电图案的演化机制

Evolution Mechanism of Photonically Sintered Nano-Silver Conductive Patterns.

作者信息

Meng Fanbo, Huang Jin

机构信息

Department of Mechano-Electronic Engineering, School of Xidian University, Xi'an 710000, China.

出版信息

Nanomaterials (Basel). 2019 Feb 14;9(2):258. doi: 10.3390/nano9020258.

Abstract

Flash sintering is the most promising sintering method because of its high speed and large area of effect. However, current flash sintering processes exhibit poor stability and the conductive pattern surface is highly susceptible to damage during this process. Therefore, a sintering parameter prediction system must be established to optimize sintering parameters for manufacturing. In this study, a photon-sintered nano-silver particle model is proposed for studying the sintering characteristics of metal nanoparticles. The temperature field of the sintering area is obtained using the heat transfer formula and the sintered neck state, and the conductive pattern density of the nano-silver particles are obtained by employing the fluid dynamics finite element method. The conductive pattern's structural density and conductivity are determined using the electronic state density and potential distribution of the crystal structure. The sintering state is then predicted based on the sintering parameters. The simulation results are consistent with conductive patterns corresponding to different sintering degrees observed using an electron microscope. The results of this study provide reference sintering parameters for flash sintering with effective cost reduction.

摘要

快速烧结是最具前景的烧结方法,因为其速度快且作用面积大。然而,当前的快速烧结工艺稳定性较差,在此过程中导电图案表面极易受损。因此,必须建立一个烧结参数预测系统,以优化制造过程中的烧结参数。在本研究中,提出了一种光子烧结纳米银颗粒模型,用于研究金属纳米颗粒的烧结特性。利用传热公式和烧结颈状态获得烧结区域的温度场,并采用流体动力学有限元方法获得纳米银颗粒的导电图案密度。根据晶体结构的电子态密度和电位分布确定导电图案的结构密度和电导率。然后根据烧结参数预测烧结状态。模拟结果与使用电子显微镜观察到的不同烧结程度对应的导电图案一致。本研究结果为快速烧结提供了参考烧结参数,有效降低了成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6410248/b487436266ef/nanomaterials-09-00258-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验