Suppr超能文献

功能热图:一种自动化和交互式的模式识别工具,可将时间与多组学检测相结合。

Functional Heatmap: an automated and interactive pattern recognition tool to integrate time with multi-omics assays.

机构信息

Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702-5010, USA.

Integrative Systems Biology Program, US Army Center for Environmental Health Research, Fort Detrick, Frederick, MD, 21702-5010, USA.

出版信息

BMC Bioinformatics. 2019 Feb 15;20(1):81. doi: 10.1186/s12859-019-2657-0.

Abstract

BACKGROUND

Life science research is moving quickly towards large-scale experimental designs that are comprised of multiple tissues, time points, and samples. Omic time-series experiments offer answers to three big questions: what collective patterns do most analytes follow, which analytes follow an identical pattern or synchronize across multiple cohorts, and how do biological functions evolve over time. Existing tools fall short of robustly answering and visualizing all three questions in a unified interface.

RESULTS

Functional Heatmap offers time-series data visualization through a Master Panel page, and Combined page to answer each of the three time-series questions. It dissects the complex multi-omics time-series readouts into patterned clusters with associated biological functions. It allows users to identify a cascade of functional changes over a time variable. Inversely, Functional Heatmap can compare a pattern with specific biology respond to multiple experimental conditions. All analyses are interactive, searchable, and exportable in a form of heatmap, line-chart, or text, and the results are easy to share, maintain, and reproduce on the web platform.

CONCLUSIONS

Functional Heatmap is an automated and interactive tool that enables pattern recognition in time-series multi-omics assays. It significantly reduces the manual labour of pattern discovery and comparison by transferring statistical models into visual clues. The new pattern recognition feature will help researchers identify hidden trends driven by functional changes using multi-tissues/conditions on a time-series fashion from omic assays.

摘要

背景

生命科学研究正在快速向大规模实验设计方向发展,这些设计包含多个组织、时间点和样本。组学时间序列实验能够回答三个大问题:大多数分析物遵循什么样的集体模式,哪些分析物遵循相同的模式或在多个队列中同步,以及生物功能如何随时间演变。现有的工具在一个统一的界面中无法稳健地回答和可视化所有三个问题。

结果

功能热图通过主面板页面和组合页面提供时间序列数据可视化,以回答三个时间序列问题中的每一个。它将复杂的多组学时间序列读数分解为具有相关生物学功能的模式聚类。它允许用户识别随时间变量变化的功能变化级联。反过来,功能热图可以将特定生物学模式与特定生物学模式与多个实验条件进行比较。所有分析都是交互式的、可搜索的,并且可以以热图、线图或文本的形式导出,结果易于在网络平台上共享、维护和复制。

结论

功能热图是一种自动化和交互式工具,能够识别时间序列多组学测定中的模式。它通过将统计模型转化为可视化线索,大大减少了模式发现和比较的人工劳动。新的模式识别功能将帮助研究人员使用来自组学测定的多组织/条件时间序列方式识别由功能变化驱动的隐藏趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e31b/6377781/353213566886/12859_2019_2657_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验