Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt/Main, Germany.
Curr Opin Immunol. 2019 Jun;58:9-15. doi: 10.1016/j.coi.2019.01.001. Epub 2019 Feb 14.
Major histocompatibility complex class I (MHC I) molecules present peptides on the surface of most nucleated cells and allow the immune system to detect and eliminate infected or malignantly transformed cells. The peptides are derived from endogenous proteins by proteasomal degradation or aberrant translation, and are translocated from the cytosol into the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP), a central component of the peptide-loading complex (PLC). The peptides are subsequently processed by ER-resident aminopeptidases (ERAP1/2) and loaded onto MHC I. This loading, however, does not happen indiscriminately: in a process called peptide editing or peptide proofreading, the MHC I-specific chaperones tapasin and TAPBPR (TAP-binding protein-related) catalyze the selection of high-affinity peptides and stable peptide-MHC I (pMHC I) complexes. Once correctly loaded with a high-affinity peptide, pMHC I complexes travel to the cell surface where they are recognized by T lymphocytes to control their differentiation in the thymus, their priming in the lymph node, and their final long-term surveillance of target cells in the periphery. Recent structural studies of the PLC and of TAPBPR-MHC I complexes by single-particle cryo-electron microscopy, X-ray crystallography, and NMR spectroscopy have provided fundamental insights into the mechanisms of MHC I peptide loading and proofreading, highlighting the dynamic nature of the involved complexes and the conformational plasticity of the individual proteins.
主要组织相容性复合体 I 类 (MHC I) 分子在大多数有核细胞的表面呈现肽,使免疫系统能够检测和消除感染或恶性转化的细胞。这些肽由蛋白酶体降解或异常翻译产生,通过与抗原加工相关的转运体 (TAP) 从细胞质转运到内质网 (ER),TAP 是肽加载复合物 (PLC) 的核心组成部分。随后,肽由内质网驻留氨肽酶 (ERAP1/2) 加工,并加载到 MHC I 上。然而,这种加载不是随机的:在称为肽编辑或肽校对的过程中,MHC I 特异性伴侣蛋白 tapasin 和 TAPBPR(TAP 结合蛋白相关)催化高亲和力肽和稳定的肽-MHC I (pMHC I) 复合物的选择。一旦正确加载高亲和力肽,pMHC I 复合物就会运送到细胞表面,在那里被 T 淋巴细胞识别,以控制它们在胸腺中的分化、在淋巴结中的启动以及它们对周围靶细胞的最终长期监测。最近通过单颗粒冷冻电子显微镜、X 射线晶体学和 NMR 光谱对 PLC 和 TAPBPR-MHC I 复合物的结构研究提供了对 MHC I 肽加载和校对机制的基本了解,突出了涉及复合物的动态性质和单个蛋白质的构象可塑性。