Bruton Joseph, Hanke Tomáš
Hertford College, University of Oxford, Oxford OX1 3BW, UK.
The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.
Vaccines (Basel). 2025 Jan 14;13(1):72. doi: 10.3390/vaccines13010072.
After four decades of intensive research, traditional vaccination strategies for HIV-1 remain ineffective due to HIV-1's extraordinary genetic diversity and complex immune evasion mechanisms. Cytomegaloviruses (CMV) have emerged as a novel type of vaccine vector with unique advantages due to CMV persistence and immunogenicity. Rhesus macaques vaccinated with molecular clone 68-1 of RhCMV (RhCMV68-1) engineered to express simian immunodeficiency virus (SIV) immunogens elicited an unconventional major histocompatibility complex class Ib allele E (MHC-E)-restricted CD8 T-cell response, which consistently protected over half of the animals against a highly pathogenic SIV challenge. The RhCMV68-1.SIV-induced responses mediated a post-infection replication arrest of the challenge virus and eventually cleared it from the body. These observations in rhesus macaques opened a possibility that MHC-E-restricted CD8 T-cells could achieve similar control of HIV-1 in humans. The potentially game-changing advantage of the human CMV (HCMV)-based vaccines is that they would induce protective CD8 T-cells persisting at the sites of entry that would be insensitive to HIV-1 evasion. In the RhCMV68-1-protected rhesus macaques, MHC-E molecules and their peptide cargo utilise complex regulatory mechanisms and unique transport patterns, and researchers study these to guide human vaccine development. However, CMVs are highly species-adapted viruses and it is yet to be shown whether the success of RhCMV68-1 can be translated into an HCMV ortholog for humans. Despite some safety concerns regarding using HCMV as a vaccine vector in humans, there is a vision of immune programming of HCMV to induce pathogen-tailored CD8 T-cells effective against HIV-1 and other life-threatening diseases.
经过四十年的深入研究,由于HIV-1具有非凡的基因多样性和复杂的免疫逃逸机制,针对HIV-1的传统疫苗策略仍然无效。巨细胞病毒(CMV)已成为一种新型疫苗载体,因其具有持久性和免疫原性而具有独特优势。用经过基因工程改造以表达猿猴免疫缺陷病毒(SIV)免疫原的恒河猴巨细胞病毒(RhCMV)分子克隆68-1(RhCMV68-1)接种的恒河猴引发了一种非常规的主要组织相容性复合体I类b等位基因E(MHC-E)限制性CD8 T细胞反应,这种反应持续保护了超过一半的动物免受高致病性SIV攻击。RhCMV68-1.SIV诱导的反应介导了攻击病毒在感染后的复制停滞,并最终将其从体内清除。在恒河猴中的这些观察结果开启了一种可能性,即MHC-E限制性CD8 T细胞在人类中可以对HIV-1实现类似的控制。基于人类巨细胞病毒(HCMV)的疫苗具有潜在的改变游戏规则的优势,即它们将诱导保护性CD8 T细胞在进入部位持续存在,而这些细胞对HIV-1的逃逸不敏感。在RhCMV68-1保护的恒河猴中,MHC-E分子及其肽负载利用复杂的调节机制和独特的运输模式,研究人员对其进行研究以指导人类疫苗的开发。然而,CMV是高度适应物种的病毒,RhCMV68-1的成功是否可以转化为人类的HCMV直系同源物还有待证明。尽管在将HCMV用作人类疫苗载体方面存在一些安全担忧,但有一种设想是对HCMV进行免疫编程,以诱导针对HIV-1和其他危及生命疾病的病原体定制的CD8 T细胞。