Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, ES-28049 Madrid, Spain.
Centro de Estudios Hidrográficos, Paseo Bajo de la Virgen del Puerto, 3, CEDEX, ES-28005 Madrid, Spain.
Sci Total Environ. 2019 May 15;665:367-378. doi: 10.1016/j.scitotenv.2019.02.083. Epub 2019 Feb 6.
Cyanobacterial harmful algal blooms (CyanoHABs) are complex communities that include coexisting toxic and non-toxic strains only distinguishable by genetic methods. This study shows a water-management oriented use of next generation sequencing (NGS) to specifically pinpoint toxigenic cyanobacteria within a bloom simultaneously containing three of the most widespread cyanotoxins (the hepatotoxins microcystins, MCs; and the neurotoxins anatoxin-a, ATX, and saxitoxins, STXs). The 2013 summer bloom in Rosarito reservoir (Spain) comprised 33 cyanobacterial OTUs based on 16S rRNA metabarcoding, 7 of which accounted for as much as 96.6% of the community. Cyanotoxins and their respective biosynthesis genes were concurrently present throughout the entire bloom event including: MCs and mcyE gene; ATX and anaF gene; and STXs and sxtI gene. NGS applied to amplicons of cyanotoxin-biosynthesis genes unveiled 6 toxigenic OTUs, comprising 3 involved in MCs production (Planktothrix agardhii and 2 Microcystis spp.), 2 in ATX production (Cuspidothrix issatschenkoi and Phormidium/Tychonema spp.) and 1 in STXs production (Aphanizomenon gracile). These toxigenic taxa were also present in 16S rRNA OTUs list and their relative abundance was positively correlated with the respective toxin concentrations. Our results point at MC-producing P. agardhii and ATX-producing C. issatschenkoi as the main contributors to the moderate toxin concentrations observed, and suggest that their distribution in Southern Europe is broader than previously thought. Our findings also stress the need for monitoring low-abundance cyanobacteria (<1% relative abundance) in cyanotoxicity studies, and provide novel data on the presence of picocyanobacteria and potentially ATX-producing benthic taxa (e.g., Phormidium) in deep thermally-stratified water bodies. This study showcases a straightforward use of amplicon metagenomics of cyanotoxin biosynthesis genes in a multi-toxin bloom thus illustrating the broad applicability of NGS for water management in risk-oriented monitoring of CyanoHABs.
蓝藻有害藻华(CyanoHABs)是一种复杂的群落,其中包括共存的有毒和无毒菌株,只有通过遗传方法才能区分。本研究展示了一种面向水管理的下一代测序(NGS)的应用,该方法可以专门在同时含有三种最广泛的蓝藻毒素(肝毒素微囊藻毒素,MCs;和神经毒素anatoxin-a,ATX 和石房蛤毒素,STXs)的藻华内准确找到产毒蓝藻。2013 年夏天,罗萨里托水库(西班牙)的藻华由 33 个蓝细菌 OTUs 组成,基于 16S rRNA 代谢组学,其中 7 个 OTUs 占群落的 96.6%。蓝藻毒素及其各自的生物合成基因在整个藻华事件中同时存在,包括:MCs 和 mcyE 基因;ATX 和 anaF 基因;和 STXs 和 sxtI 基因。应用于蓝藻毒素生物合成基因扩增子的 NGS 揭示了 6 个产毒 OTUs,其中 3 个参与 MCs 生产(颤藻和 2 种微囊藻),2 个参与 ATX 生产(Cuspidothrix issatschenkoi 和 Phormidium/Tychonema spp.),1 个参与 STXs 生产(Aphanizomenon gracile)。这些产毒分类群也存在于 16S rRNA OTUs 列表中,它们的相对丰度与相应的毒素浓度呈正相关。我们的结果表明,产 MC 的 P. agardhii 和产 ATX 的 C. issatschenkoi 是观察到的中等毒素浓度的主要贡献者,并表明它们在南欧的分布比以前认为的更广泛。我们的研究结果还强调了在蓝藻毒性研究中监测低丰度蓝藻(<1%相对丰度)的必要性,并提供了关于 picocyanobacteria 和潜在的 ATX 产生的底栖分类群(例如 Phormidium)在深热分层水体中的存在的新数据。本研究展示了在多毒素藻华中使用蓝藻毒素生物合成基因的扩增子宏基因组学的简单应用,从而说明了 NGS 在面向风险的 CyanoHABs 水管理监测中的广泛适用性。