Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 Rue St-Denis, Montréal, QC H2X 0A9, Canada.
Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 Rue St-Denis, Montréal, QC H2X 0A9, Canada; Département d'Obstétrique-Gynécologie, Faculté de Médecine, Université de Montréal, 175 chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
Curr Biol. 2019 Mar 4;29(5):865-873.e3. doi: 10.1016/j.cub.2018.12.042. Epub 2019 Feb 14.
Chromosome segregation errors during mammalian preimplantation development cause "mosaic" embryos comprising a mixture of euploid and aneuploid cells, which reduce the potential for a successful pregnancy [1-5], but why these errors are common is unknown. In most cells, chromosome segregation error is averted by the spindle assembly checkpoint (SAC), which prevents anaphase-promoting complex (APC/C) activation and anaphase onset until chromosomes are aligned with kinetochores attached to spindle microtubules [6, 7], but little is known about the SAC's role in the early mammalian embryo. In C. elegans, the SAC is weak in early embryos, and it strengthens during early embryogenesis as a result of progressively lessening cell size [8, 9]. Here, using live imaging, micromanipulation, gene knockdown, and pharmacological approaches, we show that this is not the case in mammalian embryos. Misaligned chromosomes in the early mouse embryo can recruit SAC components to mount a checkpoint signal, but this signal fails to prevent anaphase onset, leading to high levels of chromosome segregation error. We find that failure of the SAC to prolong mitosis is not attributable to cell size. We show that mild chemical inhibition of APC/C can extend mitosis, thereby allowing more time for correct chromosome alignment and reducing segregation errors. SAC-APC/C disconnect thus presents a mechanistic explanation for frequent chromosome segregation errors in early mammalian embryos. Moreover, our data provide proof of principle that modulation of the SAC-APC/C axis can increase the likelihood of error-free chromosome segregation in cultured mammalian embryos.
哺乳动物胚胎着床前发育过程中的染色体分离错误会导致“嵌合体”胚胎的形成,这些胚胎由部分正常和部分非整倍体细胞混合组成,从而降低了成功妊娠的可能性[1-5],但为什么这些错误如此常见目前尚不清楚。在大多数细胞中,纺锤体装配检查点(SAC)可以避免染色体分离错误,该检查点阻止着丝粒与纺锤体微管相连的染色体分离促进复合物(APC/C)的激活和后期起始[6,7],但目前对于 SAC 在早期哺乳动物胚胎中的作用知之甚少。在秀丽隐杆线虫中,早期胚胎中的 SAC 较弱,并且随着细胞体积逐渐减小,早期胚胎发生过程中 SAC 逐渐增强[8,9]。在这里,我们通过活细胞成像、微操作、基因敲低和药理学方法,证明在哺乳动物胚胎中并非如此。早期小鼠胚胎中染色体的错位可以募集 SAC 成分以启动检查点信号,但该信号未能阻止后期起始,导致染色体分离错误率高。我们发现 SAC 无法延长有丝分裂并非归因于细胞大小。我们表明,APC/C 的轻度化学抑制可以延长有丝分裂,从而为正确的染色体排列提供更多时间并减少分离错误。SAC-APC/C 断开因此为早期哺乳动物胚胎中频繁的染色体分离错误提供了一个机制解释。此外,我们的数据提供了原理证明,即调节 SAC-APC/C 轴可以增加培养的哺乳动物胚胎中无错误染色体分离的可能性。