Laboratory of Computational Biophysics and Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174, USA.
Nucleic Acids Res. 2019 Apr 8;47(6):2757-2765. doi: 10.1093/nar/gkz089.
Molecular insight into electronic rearrangements and structural trajectories arising from oxidative damages to DNA backbone is of crucial importance in understanding the effect of ionizing radiation, developing DNA biosensors and designing effective DNA cleaving molecules. Employing a Density Functional Theory based multi-scale Quantum-Mechanical-Molecular-Mechanical (QM/MM) simulation and a suitable partitioning of the Hamiltonian on solvated nucleotide, and single-, and double-stranded DNA, we mimic hydrogen transfer reactions from the backbone by OH radicals and report structural trajectories arising from on-the-fly electronic charge- and spin-density redistribution in these three different structural topologies of DNA. Trajectories reveal that H4' abstraction can disrupt the deoxyribose moiety through the formation of C4'=O4' ketone and a π-bond with base at C1'-N9 in a nucleotide versus only partial ketone formation in single- and double-stranded DNA, where the orientation of the base is topologically restrained. However, H5' abstraction can lead DNA cleavage at 5' end through the formation of C5'=O5' ketone and breakage of P-O5' bond. Results demonstrate that structural damages from oxidative reactions are restrained by base stacking and base-pair hydrogen bonding. The methodology can be suitably used to study targeted DNA and RNA damages from radicals and radiomimetic drugs to design DNA cleaving molecules for chemotherapy.
对 DNA 骨架氧化损伤引起的电子重排和结构轨迹进行分子洞察,对于理解电离辐射的影响、开发 DNA 生物传感器和设计有效的 DNA 切割分子至关重要。我们采用基于密度泛函理论的多尺度量子力学-分子力学(QM/MM)模拟和对溶剂化核苷酸、单链和双链 DNA 的适当哈密顿量分区,模拟了 OH 自由基从骨架上进行的氢转移反应,并报告了在这三种不同 DNA 结构拓扑中电子电荷和自旋密度重新分布所产生的结构轨迹。轨迹表明,H4' 抽取可以通过形成 C4'=O4'酮和与 C1'-N9 处碱基的π键来破坏脱氧核糖部分,而在核苷酸中只会形成部分酮,而在单链和双链 DNA 中,碱基的取向受到拓扑限制。然而,H5' 抽取可以通过形成 C5'=O5'酮和打破 P-O5'键导致 5'端的 DNA 切割。结果表明,氧化反应引起的结构损伤受到碱基堆积和碱基对氢键的限制。该方法可用于研究自由基和放射模拟药物对靶向 DNA 和 RNA 的损伤,以设计用于化疗的 DNA 切割分子。