Suppr超能文献

一种推导超弹性各向同性和各向异性生物材料应力张量和弹性张量的通用方法。

A General Approach to Derive Stress and Elasticity Tensors for Hyperelastic Isotropic and Anisotropic Biomaterials.

作者信息

Cheng Jie, Zhang Lucy T

机构信息

Department of Mechanical Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute, Troy, New York 12180, USA.

School of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, P. R. China.

出版信息

Int J Comput Methods. 2018 Jun;15(1). doi: 10.1142/S0219876218500287. Epub 2017 Sep 28.

Abstract

Hyperelastic models are of particular interest in modeling biomaterials. In order to implement them, one must derive the stress and elasticity tensors from the given potential energy function explicitly. However, it is often cumbersome to do so because researchers in biomechanics may not be well-exposed to systematic approaches to derive the stress and elasticity tensors as it is vaguely addressed in literature. To resolve this, we present a framework of a general approach to derive the stress and elasticity tensors for hyperelastic models. Throughout the derivation we carefully elaborate the differences between formulas used in the displacement-based formulation and the displacement/pressure mixed formulation. Three hyperelastic models, Mooney-Rivlin, Yeoh and Holzapfel-Gasser-Ogden models that span from first-order to higher order and from isotropic to anisotropic materials, are served as examples. These detailed derivations are validated with numerical experiments that demonstrate excellent agreements with analytical and other computational solutions. Following this framework, one could implement with ease any hyperelastic model as user-defined functions in software packages or develop as an original source code from scratch.

摘要

超弹性模型在生物材料建模中特别受关注。为了实现这些模型,必须从给定的势能函数中明确推导应力张量和弹性张量。然而,这样做往往很麻烦,因为生物力学领域的研究人员可能不太熟悉推导应力张量和弹性张量的系统方法,因为相关内容在文献中阐述得比较模糊。为了解决这个问题,我们提出了一个用于推导超弹性模型应力张量和弹性张量的通用方法框架。在整个推导过程中,我们仔细阐述了基于位移的公式和位移/压力混合公式中所用公式之间的差异。以三个超弹性模型为例,即从一阶到高阶、从各向同性到各向异性材料的穆尼 - 里夫林模型、杨模型和霍尔扎普费尔 - 加塞尔 - 奥格登模型。这些详细的推导通过数值实验进行了验证,实验结果表明与解析解和其他计算解具有极好的一致性。按照这个框架,人们可以轻松地在软件包中将任何超弹性模型作为用户定义函数来实现,或者从零开始开发为原始源代码。

相似文献

2
A robust anisotropic hyperelastic formulation for the modelling of soft tissue.一种用于软组织建模的稳健各向异性超弹性公式。
J Mech Behav Biomed Mater. 2014 Nov;39:48-60. doi: 10.1016/j.jmbbm.2014.06.016. Epub 2014 Jul 11.
5
Mechanics of pressurized planar hyperelastic membranes.受压平面超弹性膜的力学原理。
Philos Trans A Math Phys Eng Sci. 2022 Oct 17;380(2234):20210319. doi: 10.1098/rsta.2021.0319. Epub 2022 Aug 29.
9
Isogeometric Kirchhoff-Love shell formulations for biological membranes.用于生物膜的等几何Kirchhoff-Love壳理论公式
Comput Methods Appl Mech Eng. 2015 Aug 15;293:328-347. doi: 10.1016/j.cma.2015.05.006.

本文引用的文献

6
7
FEBio: finite elements for biomechanics.FEBio:生物力学有限元
J Biomech Eng. 2012 Jan;134(1):011005. doi: 10.1115/1.4005694.
8
Diameter-dependent axial prestretch of porcine coronary arteries and veins.猪冠状动脉和静脉的直径依赖性轴向预拉伸。
J Appl Physiol (1985). 2012 Mar;112(6):982-9. doi: 10.1152/japplphysiol.00857.2011. Epub 2011 Dec 8.
9
Material model of lung parenchyma based on living precision-cut lung slice testing.基于活精准肺切片测试的肺实质材料模型。
J Mech Behav Biomed Mater. 2011 May;4(4):583-92. doi: 10.1016/j.jmbbm.2011.01.006. Epub 2011 Feb 3.
10
Measurement of the hyperelastic properties of ex vivo brain tissue slices.测量离体脑组织切片的超弹性特性。
J Biomech. 2011 Apr 7;44(6):1158-63. doi: 10.1016/j.jbiomech.2011.01.019. Epub 2011 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验