Suppr超能文献

猪冠状动脉和静脉的直径依赖性轴向预拉伸。

Diameter-dependent axial prestretch of porcine coronary arteries and veins.

机构信息

Department of Biomedical Engineering, Indiana Univ. Purdue Univ. Indianapolis, Indianapolis, IN 46202, USA.

出版信息

J Appl Physiol (1985). 2012 Mar;112(6):982-9. doi: 10.1152/japplphysiol.00857.2011. Epub 2011 Dec 8.

Abstract

The pressure-diameter relation (PDR) and the wall strain of coronary blood vessels have important implications for coronary blood flow and arthrosclerosis, respectively. Previous studies have shown that these mechanical quantities are significantly affected by the axial stretch of the vessels. The objective of this study was to measure the physiological axial stretch in the coronary vasculature; i.e., from left anterior descending (LAD) artery tree to coronary sinus vein and to determine its effect on the PDR and hence wall stiffness. Silicone elastomer was perfused through the LAD artery and coronary sinus trees to cast the vessels at the physiologic pressure. The results show that the physiological axial stretch exists for orders 4 to 11 (> 24 μm in diameter) arteries and orders -4 to -12 (>38 μm in diameter) veins but vanishes for the smaller vessels. Statistically, the axial stretch is higher for larger vessels and is higher for arteries than veins. The axial stretch λ(z) shows a linear variation with the order number (n) as: λ(z) = 0.062n + 0.75 (R(2) = 0.99) for artery and λ(z) = -0.029n + 0.89 (R(2) = 0.99) for vein. The mechanical analysis shows that the axial stretch significantly affects the PDR of the larger vessels. The circumferential stretch/strain was found to be significantly higher for the epicardial arteries (orders 9-11), which are free of myocardium constraint, than the intramyocardial arteries (orders 4-8). These findings have fundamental implications for coronary blood vessel mechanics.

摘要

血管的压力-直径关系(PDR)和壁应变分别对冠状动脉血流和动脉粥样硬化有重要影响。先前的研究表明,这些力学量受血管的轴向拉伸的显著影响。本研究的目的是测量冠状动脉血管的生理轴向拉伸,即从左前降支(LAD)动脉树到冠状窦静脉,并确定其对 PDR 以及壁硬度的影响。硅酮弹性体通过 LAD 动脉和冠状窦树灌注,以在生理压力下铸造血管。结果表明,生理轴向拉伸存在于直径为 4 到 11 级(> 24μm)的动脉和直径为-4 到-12 级(> 38μm)的静脉中,但在较小的血管中则不存在。统计上,较大的血管的轴向拉伸较高,且动脉的轴向拉伸高于静脉。轴向拉伸 λ(z)与阶数(n)呈线性变化,动脉为 λ(z)= 0.062n + 0.75(R²= 0.99),静脉为 λ(z)= -0.029n + 0.89(R²= 0.99)。力学分析表明,轴向拉伸显著影响较大血管的 PDR。发现心外膜动脉(9-11 级)的周向拉伸/应变明显高于不受心肌约束的心肌内动脉(4-8 级)。这些发现对冠状动脉血管力学具有重要意义。

相似文献

1
Diameter-dependent axial prestretch of porcine coronary arteries and veins.
J Appl Physiol (1985). 2012 Mar;112(6):982-9. doi: 10.1152/japplphysiol.00857.2011. Epub 2011 Dec 8.
2
Distribution of stress and strain along the porcine aorta and coronary arterial tree.
Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2361-8. doi: 10.1152/ajpheart.01079.2003.
3
Bifurcation asymmetry of the porcine coronary vasculature and its implications on coronary flow heterogeneity.
Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2493-500. doi: 10.1152/ajpheart.00371.2004.
4
Flow velocity is relatively uniform in the coronary sinusal venous tree: structure-function relation.
J Appl Physiol (1985). 2017 Jan 1;122(1):60-67. doi: 10.1152/japplphysiol.00295.2016. Epub 2016 Oct 27.
5
Relation between zero-stress state and branching order of porcine left coronary arterial tree.
Am J Physiol. 1998 Dec;275(6):H2283-90. doi: 10.1152/ajpheart.1998.275.6.H2283.
6
Effects of myocardial constraint on the passive mechanical behaviors of the coronary vessel wall.
Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H514-23. doi: 10.1152/ajpheart.00670.2007. Epub 2007 Nov 9.
7
A Novel Approach to Assess the In Situ Versus Ex Vivo Mechanical Behaviors of the Coronary Artery.
J Biomech Eng. 2017 Jan 1;139(1):0110101-7. doi: 10.1115/1.4035262.
8
The influence of transmural pressure and longitudinal stretch on K+- and Ca2+-induced coronary artery constriction.
Acta Physiol Scand. 1999 Apr;165(4):379-85. doi: 10.1046/j.1365-201x.1999.00519.x.
9
Tissue concentrations of endothelins and functional effects of endothelin-receptor activation in human arteries and veins.
J Thorac Cardiovasc Surg. 1996 Aug;112(2):264-72. doi: 10.1016/S0022-5223(96)70248-9.
10
Axial stretch modifies contractility of porcine coronary arteries by a protein kinase C-dependent mechanism.
Pharmacol Toxicol. 2001 Feb;88(2):89-97. doi: 10.1034/j.1600-0773.2001.088002089.x.

引用本文的文献

1
Biomechanical effects of hemin and sildenafil treatments on the aortic wall of chronic-hypoxic lambs.
Front Bioeng Biotechnol. 2024 Jul 3;12:1406214. doi: 10.3389/fbioe.2024.1406214. eCollection 2024.
2
Considering the Influence of Coronary Motion on Artery-Specific Biomechanics Using Fluid-Structure Interaction Simulation.
Ann Biomed Eng. 2023 Sep;51(9):1950-1964. doi: 10.1007/s10439-023-03214-0. Epub 2023 Jul 12.
3
Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery.
Acta Biomater. 2022 Sep 15;150:295-309. doi: 10.1016/j.actbio.2022.07.036. Epub 2022 Jul 26.
4
A General Approach to Derive Stress and Elasticity Tensors for Hyperelastic Isotropic and Anisotropic Biomaterials.
Int J Comput Methods. 2018 Jun;15(1). doi: 10.1142/S0219876218500287. Epub 2017 Sep 28.
5
Branching Pattern of the Cerebral Arterial Tree.
Anat Rec (Hoboken). 2019 Aug;302(8):1434-1446. doi: 10.1002/ar.23994. Epub 2018 Dec 5.
6
Mechanobiological model of arterial growth and remodeling.
Biomech Model Mechanobiol. 2018 Feb;17(1):87-101. doi: 10.1007/s10237-017-0946-y. Epub 2017 Aug 19.
7
Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm.
Biomed Eng Online. 2015;14 Suppl 1(Suppl 1):S18. doi: 10.1186/1475-925X-14-S1-S18. Epub 2015 Jan 9.
8
Slackness between vessel and myocardium is necessary for coronary flow reserve.
Am J Physiol Heart Circ Physiol. 2012 Jun 1;302(11):H2230-42. doi: 10.1152/ajpheart.01184.2011. Epub 2012 Mar 9.

本文引用的文献

1
Why is the subendocardium more vulnerable to ischemia? A new paradigm.
Am J Physiol Heart Circ Physiol. 2011 Mar;300(3):H1090-100. doi: 10.1152/ajpheart.00473.2010. Epub 2010 Dec 17.
2
A systems approach to tissue remodeling.
J Biomech Eng. 2009 Oct;131(10):101008. doi: 10.1115/1.3200909.
3
Effects of myocardial constraint on the passive mechanical behaviors of the coronary vessel wall.
Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H514-23. doi: 10.1152/ajpheart.00670.2007. Epub 2007 Nov 9.
5
Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model.
Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1200-9. doi: 10.1152/ajpheart.01323.2005. Epub 2006 Mar 31.
6
Duration of no-load state affects opening angle of porcine coronary arteries.
Am J Physiol Heart Circ Physiol. 2006 May;290(5):H1871-8. doi: 10.1152/ajpheart.00910.2005. Epub 2005 Dec 9.
7
Nonuniformity of axial and circumferential remodeling of large coronary veins in response to ligation.
Am J Physiol Heart Circ Physiol. 2006 Apr;290(4):H1558-65. doi: 10.1152/ajpheart.00928.2005. Epub 2005 Nov 18.
8
Distribution of stress and strain along the porcine aorta and coronary arterial tree.
Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2361-8. doi: 10.1152/ajpheart.01079.2003.
9
Effect of passive myocardium on the compliance of porcine coronary arteries.
Am J Physiol Heart Circ Physiol. 2003 Aug;285(2):H653-60. doi: 10.1152/ajpheart.00090.2003.
10
Association between risk factors for atherosclerosis and mechanical forces in carotid artery.
Stroke. 2000 Oct;31(10):2319-24. doi: 10.1161/01.str.31.10.2319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验