Yu G, Rossen W R, Vincent-Bonnieu S
Delft University of Technology, Delft, 2628CN / 2600GA, Netherlands.
Shell Global Solutions International B. V., Amsterdam, Netherlands.
Ind Eng Chem Res. 2019 Jan 9;58(1):420-427. doi: 10.1021/acs.iecr.8b03141. Epub 2018 Nov 30.
The propagation of foam in an oil reservoir depends on the creation and stability of the foam in the reservoir, specifically the creation and stability of foam films, or lamellae. As the foam propagates far from the injection well, superficial velocity and pressure gradient decrease with distance from the well. Experimental (Friedmann et al. Steam-foam mechanistic field trial in the midway-sunset field. . , (4), 297-304) and theoretical (Ashoori, et al. Roles of Transient and Local Equilibrium Foam Behaviour in Porous Media: Traveling Wave. , (1-3), 228-242). studies relate concerns about foam propagation at low superficial velocity to the minimum velocity or pressure gradient for foam generation near the well (Gauglitz et al. Foam Generation in Homogeneous Porous Media. , , 4037-4052; Rossen et al. Percolation Theory of Creation and Mobilization of Foams in Porous Media. , , (8)). The objective of this work is to measure the impact of surfactant concentration and gas fractional flow on foam generation. Theory (Kam et al. Model for Foam Generation in Homogeneous Media. , (4): 417-42, SPE-87334-PA; Rossen ) relates foam generation to gas fractional flow and, indirectly, to the stability of foam films, or lamellae, which in turn depends on surfactant concentration (Apaydin et al. Surfactant Concentration and End Effects on Foam Flow in Porous Media. (Apaydin et al.. , 43, 511-536). However, the link between foam generation and surfactant concentration has not been established experimentally. In our experiments, nitrogen foam is generated in a core of Bentheimer sandstone. The foam-generation experiments consist of measuring the minimum velocity for foam generation as a function of gas fractional flow at three surfactant concentrations well above the critical micelle concentration. Experimental results show that the minimum velocity for foam generation decreases with increasing liquid fraction, as shown by previous foam generation studies (Friedmann et al., ; Rossen and Gauglitz, ). Additionally, our results show that this velocity decreases with increasing surfactant concentration, far above the CMC. We also propose a workflow for screening out the experimental artifacts that can distort the trigger velocity.
泡沫在油藏中的传播取决于油藏中泡沫的产生和稳定性,特别是泡沫膜或薄片的产生和稳定性。随着泡沫远离注入井传播,表观速度和压力梯度随距井的距离而降低。实验研究(弗里德曼等人,中途日落油田的蒸汽泡沫机理现场试验……,(4),297 - 304)和理论研究(阿肖里等人,多孔介质中瞬态和局部平衡泡沫行为的作用:行波……,(1 - 3),228 - 242)将低表观速度下泡沫传播的问题与井附近泡沫产生的最小速度或压力梯度联系起来(高格利茨等人,均匀多孔介质中的泡沫产生……,……,4037 - 4052;罗森等人,多孔介质中泡沫产生和运移的渗流理论……,……,(8))。这项工作的目的是测量表面活性剂浓度和气体分流率对泡沫产生的影响。理论研究(卡姆等人,均匀介质中泡沫产生的模型……,(4):417 - 42,SPE - 87334 - PA;罗森)将泡沫产生与气体分流率联系起来,进而间接与泡沫膜或薄片的稳定性联系起来,而泡沫膜或薄片的稳定性又取决于表面活性剂浓度(阿帕丁等人,表面活性剂浓度和端部效应在多孔介质中对泡沫流动的影响。(阿帕丁等人……,43,511 - 536)。然而,泡沫产生与表面活性剂浓度之间的联系尚未通过实验建立起来。在我们的实验中,在本特海默砂岩岩心中产生氮气泡沫。泡沫产生实验包括在三种远高于临界胶束浓度的表面活性剂浓度下,测量作为气体分流率函数的泡沫产生的最小速度。实验结果表明,如先前的泡沫产生研究(弗里德曼等人,;罗森和高格利茨,)所示,泡沫产生的最小速度随着液相分数的增加而降低。此外,我们的结果表明,该速度随着表面活性剂浓度的增加而降低,且远高于临界胶束浓度。我们还提出了一种工作流程,用于筛选出可能扭曲触发速度的实验假象。