Suppr超能文献

基于强度和位置先验的脑切除MRI配准

REGISTRATION OF BRAIN RESECTION MRI WITH INTENSITY AND LOCATION PRIORS.

作者信息

Chitphakdithai Nicha, Vives Kenneth P, Duncan James S

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2011 Mar-Apr;2011:1520-1523. doi: 10.1109/ISBI.2011.5872690. Epub 2011 Jun 9.

Abstract

Images with missing correspondences are difficult to align using standard registration methods due to the assumption that the same features appear in both images. To address this problem in brain resection images, we have recently proposed an algorithm in which the registration process is aided by an indicator map that is simultaneously estimated to distinguish between missing and valid tissue. We now extend our method to include both intensity and location information for the missing data. We introduce a prior on the indicator map using a Markov random field (MRF) framework to incorporate map smoothness and spatial knowledge of the missing correspondences. The parameters for the indicator map prior are automatically estimated along with the transformation and indicator map. The new method improves both segmentation and registration accuracy as demonstrated using synthetic and real patient data.

摘要

由于标准配准方法假定两幅图像中会出现相同的特征,因此对于缺少对应关系的图像,很难使用这些方法进行配准。为了解决脑切除图像中的这一问题,我们最近提出了一种算法,在该算法中,配准过程由一个指示图辅助,该指示图会同时进行估计,以区分缺失组织和有效组织。现在,我们将方法进行扩展,纳入了缺失数据的强度和位置信息。我们使用马尔可夫随机场(MRF)框架在指示图上引入先验,以纳入图的平滑性和缺失对应关系的空间知识。指示图先验的参数会与变换和指示图一起自动估计。如使用合成数据和真实患者数据所证明的那样,新方法提高了分割和配准的准确性。

相似文献

1
REGISTRATION OF BRAIN RESECTION MRI WITH INTENSITY AND LOCATION PRIORS.基于强度和位置先验的脑切除MRI配准
Proc IEEE Int Symp Biomed Imaging. 2011 Mar-Apr;2011:1520-1523. doi: 10.1109/ISBI.2011.5872690. Epub 2011 Jun 9.
5
NONRIGID VOLUME REGISTRATION USING SECOND-ORDER MRF MODEL.
Proc IEEE Int Symp Biomed Imaging. 2012 May;2012:708-711. doi: 10.1109/ISBI.2012.6235646. Epub 2012 Jul 12.
6
Non-rigid registration of longitudinal brain tumor treatment MRI.纵向脑肿瘤治疗磁共振成像的非刚性配准
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4893-6. doi: 10.1109/IEMBS.2011.6091212.
8
Robust generative asymmetric GMM for brain MR image segmentation.用于脑部磁共振图像分割的稳健生成式非对称高斯混合模型
Comput Methods Programs Biomed. 2017 Nov;151:123-138. doi: 10.1016/j.cmpb.2017.08.017. Epub 2017 Aug 24.

本文引用的文献

5
A Bayesian model for joint segmentation and registration.一种用于联合分割与配准的贝叶斯模型。
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.
6
Medical image registration with partial data.基于部分数据的医学图像配准
Med Image Anal. 2006 Jun;10(3):452-64. doi: 10.1016/j.media.2005.03.006. Epub 2005 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验