Periaswamy Senthil, Farid Hany
Siemens Medical Solutions USA, Inc., Malvern, PA 19355, USA.
Med Image Anal. 2006 Jun;10(3):452-64. doi: 10.1016/j.media.2005.03.006. Epub 2005 Jun 23.
We have developed a general-purpose registration algorithm for medical images and volumes. The transformation between images is modeled as locally affine but globally smooth, and explicitly accounts for local and global variations in image intensities. An explicit model of missing data is also incorporated, allowing us to simultaneously segment and register images with partial or missing data. The algorithm is built upon a differential multiscale framework and incorporates the expectation maximization algorithm. We show that this approach is highly effective in registering a range of synthetic and clinical medical images.
我们已经开发出一种用于医学图像和容积的通用配准算法。图像之间的变换被建模为局部仿射但全局平滑的,并明确考虑了图像强度的局部和全局变化。还纳入了一个明确的缺失数据模型,使我们能够同时对具有部分或缺失数据的图像进行分割和配准。该算法基于一个微分多尺度框架构建,并纳入了期望最大化算法。我们表明,这种方法在配准一系列合成和临床医疗图像方面非常有效。