Suppr超能文献

术前和切除术后脑图像中存在对应关系缺失的非刚性配准。

Non-rigid registration with missing correspondences in preoperative and postresection brain images.

作者信息

Chitphakdithai Nicha, Duncan James S

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 1):367-74. doi: 10.1007/978-3-642-15705-9_45.

Abstract

Registration of preoperative and postresection images is often needed to evaluate the effectiveness of treatment. While several non-rigid registration methods exist, most would be unable to accurately align these types of datasets due to the absence of tissue in one image. Here we present a joint registration and segmentation algorithm which handles the missing correspondence problem. An intensity-based prior is used to aid in the segmentation of the resection region from voxels with valid correspondences in the two images. The problem is posed in a maximum a posteriori (MAP) framework and optimized using the expectation-maximization (EM) algorithm. Results on both synthetic and real data show our method improved image alignment compared to a traditional non-rigid registration algorithm as well as a method using a robust error kernel in the registration similarity metric.

摘要

通常需要对术前和切除后图像进行配准,以评估治疗效果。虽然存在几种非刚性配准方法,但由于其中一幅图像中没有组织,大多数方法无法准确对齐这些类型的数据集。在此,我们提出一种联合配准和分割算法,该算法可处理对应关系缺失的问题。基于强度的先验用于辅助从两幅图像中具有有效对应关系的体素中分割出切除区域。该问题在最大后验概率(MAP)框架中提出,并使用期望最大化(EM)算法进行优化。合成数据和真实数据的结果均表明,与传统的非刚性配准算法以及在配准相似性度量中使用鲁棒误差核的方法相比,我们的方法改善了图像对齐效果。

相似文献

5
Groupwise registration by hierarchical anatomical correspondence detection.通过分层解剖对应检测进行分组配准。
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):684-91. doi: 10.1007/978-3-642-15745-5_84.
6
Hierarchical segmentation-assisted multimodal registration for MR brain images.基于层次分割的多模态磁共振脑图像配准方法。
Comput Med Imaging Graph. 2013 Apr;37(3):234-44. doi: 10.1016/j.compmedimag.2013.03.004. Epub 2013 Mar 29.
8
Similarity metrics for groupwise non-rigid registration.用于逐组非刚性配准的相似性度量
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):544-52. doi: 10.1007/978-3-540-75759-7_66.
9
Non-rigid registration of breast images using feature points.使用特征点的乳腺图像非刚性配准
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4387-90. doi: 10.1109/IEMBS.2010.5627142.

引用本文的文献

4
Development and Characterization of a Chest CT Atlas.胸部CT图谱的开发与特征描述
Proc SPIE Int Soc Opt Eng. 2021;2021. doi: 10.1117/12.2580800. Epub 2021 Feb 15.
7
Tracking Metastatic Brain Tumors in Longitudinal Scans via Joint Image Registration and Labeling.通过联合图像配准和标记在纵向扫描中追踪转移性脑肿瘤
Spatiotemporal Image Anal Longitud Time Ser Image Data (2012). 2012 Oct;7570:124-136. doi: 10.1007/978-3-642-33555-6_11.
8
REGISTRATION OF BRAIN RESECTION MRI WITH INTENSITY AND LOCATION PRIORS.基于强度和位置先验的脑切除MRI配准
Proc IEEE Int Symp Biomed Imaging. 2011 Mar-Apr;2011:1520-1523. doi: 10.1109/ISBI.2011.5872690. Epub 2011 Jun 9.
9
Registration of Pathological Images.病理图像的登记
Simul Synth Med Imaging. 2016 Oct;9968:97-107. doi: 10.1007/978-3-319-46630-9_10. Epub 2016 Sep 23.

本文引用的文献

8
A Bayesian model for joint segmentation and registration.一种用于联合分割与配准的贝叶斯模型。
Neuroimage. 2006 May 15;31(1):228-39. doi: 10.1016/j.neuroimage.2005.11.044. Epub 2006 Feb 7.
9
Medical image registration with partial data.基于部分数据的医学图像配准
Med Image Anal. 2006 Jun;10(3):452-64. doi: 10.1016/j.media.2005.03.006. Epub 2005 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验