Chitphakdithai Nicha, Duncan James S
Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):367-74. doi: 10.1007/978-3-642-15705-9_45.
Registration of preoperative and postresection images is often needed to evaluate the effectiveness of treatment. While several non-rigid registration methods exist, most would be unable to accurately align these types of datasets due to the absence of tissue in one image. Here we present a joint registration and segmentation algorithm which handles the missing correspondence problem. An intensity-based prior is used to aid in the segmentation of the resection region from voxels with valid correspondences in the two images. The problem is posed in a maximum a posteriori (MAP) framework and optimized using the expectation-maximization (EM) algorithm. Results on both synthetic and real data show our method improved image alignment compared to a traditional non-rigid registration algorithm as well as a method using a robust error kernel in the registration similarity metric.
通常需要对术前和切除后图像进行配准,以评估治疗效果。虽然存在几种非刚性配准方法,但由于其中一幅图像中没有组织,大多数方法无法准确对齐这些类型的数据集。在此,我们提出一种联合配准和分割算法,该算法可处理对应关系缺失的问题。基于强度的先验用于辅助从两幅图像中具有有效对应关系的体素中分割出切除区域。该问题在最大后验概率(MAP)框架中提出,并使用期望最大化(EM)算法进行优化。合成数据和真实数据的结果均表明,与传统的非刚性配准算法以及在配准相似性度量中使用鲁棒误差核的方法相比,我们的方法改善了图像对齐效果。