Suppr超能文献

基于联合L范数和全变差的正则化重建用于稀疏视图锥束X射线发光计算机断层扫描

Regularized reconstruction based on joint L and total variation for sparse-view cone-beam X-ray luminescence computed tomography.

作者信息

Liu Tianshuai, Rong Junyan, Gao Peng, Pu Huangsheng, Zhang Wenli, Zhang Xiaofeng, Liang Zhengrong, Lu Hongbing

机构信息

Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.

Department of Radiology and Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.

出版信息

Biomed Opt Express. 2018 Dec 3;10(1):1-17. doi: 10.1364/BOE.10.000001. eCollection 2019 Jan 1.

Abstract

As an emerging hybrid imaging modality, cone-beam X-ray luminescence computed tomography (CB-XLCT) has been proposed based on the development of X-ray excitable nanoparticles. Owing to the high degree of absorption and scattering of light through tissues, the CB-XLCT inverse problem is inherently ill-conditioned. Appropriate priors or regularizations are needed to facilitate reconstruction and to restrict the search space to a specific solution set. Typically, the goal of CB-XLCT reconstruction is to get the distributions of nanophosphors in the imaging object. Considering that the distributions of nanophosphors inside bodies preferentially accumulate in specific areas of interest, the reconstruction of XLCT images is usually sparse with some locally smoothed high-intensity regions. Therefore, a combination of the L and total variation regularization is designed to improve the imaging quality of CB-XLCT in this study. The L regularization is used for enforcing the sparsity of the reconstructed images and the total variation regularization is used for maintaining the local smoothness of the reconstructed image. The implementation of this method can be divided into two parts. First, the reconstruction image was reconstructed based on the fast iterative shrinkage-thresholding (FISTA) algorithm, then the reconstruction image was minimized by the gradient descent method. Numerical simulations and phantom experiments indicate that compared with the traditional ART, ADAPTIK and FISTA methods, the proposed method demonstrates its advantage in improving spatial resolution and reducing imaging time.

摘要

作为一种新兴的混合成像模态,基于X射线可激发纳米粒子的发展,提出了锥束X射线发光计算机断层扫描(CB-XLCT)。由于光在组织中的高度吸收和散射,CB-XLCT逆问题本质上是病态的。需要适当的先验或正则化来促进重建,并将搜索空间限制在特定的解集。通常,CB-XLCT重建的目标是获得成像对象中纳米磷光体的分布。考虑到体内纳米磷光体的分布优先聚集在特定的感兴趣区域,XLCT图像的重建通常是稀疏的,有一些局部平滑的高强度区域。因此,本研究设计了L和总变差正则化的组合,以提高CB-XLCT的成像质量。L正则化用于增强重建图像的稀疏性,总变差正则化用于保持重建图像的局部平滑性。该方法的实现可分为两部分。首先,基于快速迭代收缩阈值(FISTA)算法重建图像,然后通过梯度下降法对重建图像进行最小化。数值模拟和体模实验表明,与传统的ART、ADAPTIK和FISTA方法相比,该方法在提高空间分辨率和减少成像时间方面具有优势。

相似文献

1
Regularized reconstruction based on joint L and total variation for sparse-view cone-beam X-ray luminescence computed tomography.
Biomed Opt Express. 2018 Dec 3;10(1):1-17. doi: 10.1364/BOE.10.000001. eCollection 2019 Jan 1.
2
Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.
J Biomed Opt. 2018 Feb;23(2):1-11. doi: 10.1117/1.JBO.23.2.026006.
3
Cone-beam X-ray luminescence computed tomography based on MLEM with adaptive FISTA initial image.
Comput Methods Programs Biomed. 2023 Feb;229:107265. doi: 10.1016/j.cmpb.2022.107265. Epub 2022 Nov 23.
4
Dual and Multi-Target Cone-Beam X-ray Luminescence Computed Tomography Based on the DeepCB-XLCT Network.
Bioengineering (Basel). 2024 Aug 28;11(9):874. doi: 10.3390/bioengineering11090874.
6
Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.
IEEE Trans Med Imaging. 2017 Jan;36(1):225-235. doi: 10.1109/TMI.2016.2603843. Epub 2016 Aug 26.
7
Cone beam x-ray luminescence computed tomography: a feasibility study.
Med Phys. 2013 Mar;40(3):031111. doi: 10.1118/1.4790694.
8
Sparse view cone beam X-ray luminescence tomography based on truncated singular value decomposition.
Opt Express. 2018 Sep 3;26(18):23233-23250. doi: 10.1364/OE.26.023233.
9
SODL-IR-FISTA: sparse online dictionary learning with iterative reduction FISTA for cone-beam X-ray luminescence computed tomography.
Biomed Opt Express. 2024 Aug 12;15(9):5162-5179. doi: 10.1364/BOE.531828. eCollection 2024 Sep 1.

引用本文的文献

1
Dual and Multi-Target Cone-Beam X-ray Luminescence Computed Tomography Based on the DeepCB-XLCT Network.
Bioengineering (Basel). 2024 Aug 28;11(9):874. doi: 10.3390/bioengineering11090874.
2
SODL-IR-FISTA: sparse online dictionary learning with iterative reduction FISTA for cone-beam X-ray luminescence computed tomography.
Biomed Opt Express. 2024 Aug 12;15(9):5162-5179. doi: 10.1364/BOE.531828. eCollection 2024 Sep 1.
3
Superfast Scan of Focused X-Ray Luminescence Computed Tomography Imaging.
IEEE Access. 2023;11:134183-134190. doi: 10.1109/access.2023.3336615. Epub 2023 Nov 23.
5
Review of in vivo optical molecular imaging and sensing from x-ray excitation.
J Biomed Opt. 2021 Jan;26(1). doi: 10.1117/1.JBO.26.1.010902.

本文引用的文献

1
Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.
J Biomed Opt. 2018 Feb;23(2):1-11. doi: 10.1117/1.JBO.23.2.026006.
2
Resolving adjacent nanophosphors of different concentrations by excitation-based cone-beam X-ray luminescence tomography.
Biomed Opt Express. 2017 Aug 4;8(9):3952-3965. doi: 10.1364/BOE.8.003952. eCollection 2017 Sep 1.
3
A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing.
Proc SPIE Int Soc Opt Eng. 2017 Jan 28;10059. doi: 10.1117/12.2252664. Epub 2017 Feb 17.
4
Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method.
J Biomed Opt. 2017 May 1;22(5):55001. doi: 10.1117/1.JBO.22.5.055001.
5
Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.
IEEE Trans Med Imaging. 2017 Jan;36(1):225-235. doi: 10.1109/TMI.2016.2603843. Epub 2016 Aug 26.
6
Multiple pinhole collimator based X-ray luminescence computed tomography.
Biomed Opt Express. 2016 Jun 3;7(7):2506-23. doi: 10.1364/BOE.7.002506. eCollection 2016 Jul 1.
7
Fast X-ray luminescence computed tomography imaging.
IEEE Trans Biomed Eng. 2014 Jun;61(6):1621-7. doi: 10.1109/TBME.2013.2294633.
8
Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update.
Phys Med Biol. 2014 Jan 6;59(1):R1-64. doi: 10.1088/0031-9155/59/1/R1. Epub 2013 Dec 16.
9
In vivo x-ray luminescence tomographic imaging with single-view data.
Opt Lett. 2013 Nov 15;38(22):4530-3. doi: 10.1364/OL.38.004530.
10
Cone beam x-ray luminescence computed tomography: a feasibility study.
Med Phys. 2013 Mar;40(3):031111. doi: 10.1118/1.4790694.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验