Suppr超能文献

基于核方法的解剖图像引导荧光分子断层重建

Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method.

机构信息

University of California, Merced, School of Engineering, Merced, California, United States.

University of California, Davis, Department of Biomedical Engineering, Davis, California, United States.

出版信息

J Biomed Opt. 2017 May 1;22(5):55001. doi: 10.1117/1.JBO.22.5.055001.

Abstract

Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach’s feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method.

摘要

荧光分子断层成像(FMT)是一种重要的活体成像方式,可用于可视化小动物体内的生理和病理过程。然而,由于深层组织中强光学散射的存在,FMT 重建存在不适定性和不适定条件问题,导致空间分辨率较差。众所周知,通过在 FMT 重建中应用结构引导,可以显著改善 FMT 图像质量。本文提出了一种使用核方法将解剖学信息引入 FMT 重建的方法。与传统方法将解剖学信息与拉普拉斯型正则化矩阵相结合不同,所提出的方法将解剖学引导引入 FMT 的投影模型中。该方法的主要优点是不需要对解剖图像中的目标进行分割。已经进行了数值模拟和体模实验来验证所提出方法的可行性。数值模拟结果表明,所提出的核方法可以分离边缘到边缘距离为 1 毫米的两个 FMT 目标,并且对解剖图像中的假阳性引导和非均匀性具有鲁棒性。对于具有两个 FMT 目标的体模实验,核方法成功地重建了两个目标,这进一步验证了所提出的核方法。

相似文献

1
Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method.
J Biomed Opt. 2017 May 1;22(5):55001. doi: 10.1117/1.JBO.22.5.055001.
2
Greedy reconstruction algorithm for fluorescence molecular tomography by means of truncated singular value decomposition conversion.
J Opt Soc Am A Opt Image Sci Vis. 2013 Mar 1;30(3):437-47. doi: 10.1364/JOSAA.30.000437.
3
Synchronization-based clustering algorithm for reconstruction of multiple reconstructed targets in fluorescence molecular tomography.
J Opt Soc Am A Opt Image Sci Vis. 2018 Feb 1;35(2):328-335. doi: 10.1364/JOSAA.35.000328.
4
Laplacian manifold regularization method for fluorescence molecular tomography.
J Biomed Opt. 2017 Apr 1;22(4):45009. doi: 10.1117/1.JBO.22.4.045009.
5
Efficient reconstruction method for L1 regularization in fluorescence molecular tomography.
Appl Opt. 2010 Dec 20;49(36):6930-7. doi: 10.1364/AO.49.006930.
6
Fast multislice fluorescence molecular tomography using sparsity-inducing regularization.
J Biomed Opt. 2016 Feb;21(2):26012. doi: 10.1117/1.JBO.21.2.026012.
7
Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement.
Phys Med Biol. 2014 Jun 21;59(12):2901-12. doi: 10.1088/0031-9155/59/12/2901. Epub 2014 May 15.
8
An adaptive Tikhonov regularization method for fluorescence molecular tomography.
Med Biol Eng Comput. 2013 Aug;51(8):849-58. doi: 10.1007/s11517-013-1054-5. Epub 2013 Mar 16.
9

引用本文的文献

1
Liver injury monitoring using dynamic fluorescence molecular tomography based on a time-energy difference strategy.
Biomed Opt Express. 2023 Sep 19;14(10):5298-5315. doi: 10.1364/BOE.498092. eCollection 2023 Oct 1.
2
Multi-target reconstruction strategy based on blind source separation of surface measurement signals in FMT.
Biomed Opt Express. 2023 Feb 16;14(3):1159-1177. doi: 10.1364/BOE.481348. eCollection 2023 Mar 1.
3
Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography.
Biomed Opt Express. 2022 Nov 8;13(12):6284-6299. doi: 10.1364/BOE.474982. eCollection 2022 Dec 1.
4
Recent methodology advances in fluorescence molecular tomography.
Vis Comput Ind Biomed Art. 2018 Sep 5;1(1):1. doi: 10.1186/s42492-018-0001-6.
5
Intercomparison of MR-informed PET image reconstruction methods.
Med Phys. 2019 Nov;46(11):5055-5074. doi: 10.1002/mp.13812. Epub 2019 Oct 4.
6
Regularized reconstruction based on joint L and total variation for sparse-view cone-beam X-ray luminescence computed tomography.
Biomed Opt Express. 2018 Dec 3;10(1):1-17. doi: 10.1364/BOE.10.000001. eCollection 2019 Jan 1.
7
Spatially-Compact MR-Guided Kernel EM for PET Image Reconstruction.
IEEE Trans Radiat Plasma Med Sci. 2018 Sep;2(5):470-482. doi: 10.1109/TRPMS.2018.2844559. Epub 2018 Jun 6.
8
High Temporal-Resolution Dynamic PET Image Reconstruction Using a New Spatiotemporal Kernel Method.
IEEE Trans Med Imaging. 2019 Mar;38(3):664-674. doi: 10.1109/TMI.2018.2869868. Epub 2018 Sep 12.
9
MR-Guided Kernel EM Reconstruction for Reduced Dose PET Imaging.
IEEE Trans Radiat Plasma Med Sci. 2018 May;2(3):235-243. doi: 10.1109/TRPMS.2017.2771490. Epub 2017 Nov 9.

本文引用的文献

1
pentamodal tomographic imaging for small animals.
Biomed Opt Express. 2017 Feb 6;8(3):1356-1371. doi: 10.1364/BOE.8.001356. eCollection 2017 Mar 1.
2
Sensitivity study of x-ray luminescence computed tomography.
Appl Opt. 2017 Apr 10;56(11):3010-3019. doi: 10.1364/AO.56.003010.
3
An accelerated photo-magnetic imaging reconstruction algorithm based on an analytical forward solution and a fast Jacobian assembly method.
Phys Med Biol. 2016 Oct 21;61(20):7448-7465. doi: 10.1088/0031-9155/61/20/7448. Epub 2016 Oct 3.
4
Fast multislice fluorescence molecular tomography using sparsity-inducing regularization.
J Biomed Opt. 2016 Feb;21(2):26012. doi: 10.1117/1.JBO.21.2.026012.
6
Shape-based reconstruction of dynamic fluorescent yield with a level set method.
Biomed Eng Online. 2016 Jan 14;15:6. doi: 10.1186/s12938-016-0124-y.
8
Nonuniform update for sparse target recovery in fluorescence molecular tomography accelerated by ordered subsets.
Biomed Opt Express. 2014 Nov 12;5(12):4249-59. doi: 10.1364/BOE.5.004249. eCollection 2014 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验