Suppr超能文献

FeS 纳米颗粒封装在 N 掺杂碳纳米片中的可扩展合成作为高性能钠离子电池的阳极。

Scalable synthesis of FeS nanoparticles encapsulated into N-doped carbon nanosheets as a high-performance sodium-ion battery anode.

机构信息

Guangzhou Key Laboratory of Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.

Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.

出版信息

Nanoscale. 2019 Mar 7;11(9):3773-3779. doi: 10.1039/c8nr10444a. Epub 2019 Feb 18.

Abstract

Pyrite (FeS) has been considered as one of the most potential anode materials for sodium ion batteries (SIBs) due to its low cost, environmentally friendly features and high theoretical capacity. However, the huge volume changes during a charge/discharge process and poor conductivity of FeS hindered its practical applications. Herein, we propose a facile scalable approach to prepare nanostructured FeS embedded in an N-doped carbon nanosheet composite (FeS/CNS) via a combined template method and a solid state sulfuration method. N-Doped carbon nanosheets are believed to alleviate the volume variation and enhance the conductivity of an electrode, and the nanoscale particle size with an average diameter of 50-80 nm can shorten the ion-diffusion paths during a sodiation/desodiation process. As a result, the FeS/CNS electrode exhibits high specific capacity (812 mA h g at 0.1 A g), long cycling life (77.2% capacity retention after 350 cycles at 1 A g) and excellent rate capability (400 mA h g at 5 A g) when tested as an anode material for SIBs. The results demonstrate the potential applications of FeS/CNS in SIBs with low-cost, high power density and long cycling life.

摘要

黄铁矿(FeS)因其成本低、环境友好和高理论容量而被认为是最有潜力的钠离子电池(SIBs)的阳极材料之一。然而,在充放电过程中巨大的体积变化和 FeS 的导电性差阻碍了其实际应用。在此,我们提出了一种简便的方法,通过模板法和固态硫化法制备了纳米结构的 FeS 嵌入氮掺杂碳纳米片复合材料(FeS/CNS)。氮掺杂碳纳米片被认为可以减轻电极的体积变化并提高其导电性,纳米级粒径(平均直径为 50-80nm)可以缩短钠离子嵌入/脱嵌过程中的离子扩散路径。结果,FeS/CNS 电极作为 SIBs 的阳极材料具有高比容量(在 0.1Ag 时为 812mA h g)、长循环寿命(在 1Ag 时 350 次循环后容量保持率为 77.2%)和优异的倍率性能(在 5Ag 时为 400mA h g)。这些结果表明 FeS/CNS 在具有低成本、高功率密度和长循环寿命的 SIBs 中有潜在的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验