Argani Hassan
From the Shahidbeheshti University of Medical Sciences, Tehran, Iran.
Exp Clin Transplant. 2019 Jan;17(Suppl 1):31-37. doi: 10.6002/ect.MESOT2018.L34.
To avoid the ethical issues of embryonic stem cells, genome engineering has focused on inducible pluripotent stem cells, which can develop into all 3 germ layers. The ability to detect methylation patterns in these cells allows research into pluripotency markers. The recently developed CRISPR system has allowed widespread application of genome engineering techniques. The CRISPR-Cas9 system, a potent system for genome editing, can be used for gene knockout or knock-in genome manipulations through substitution of a target genetic sequence with a desired donor sequence. Two types of genome engineering can be initiated: homologous or nonhomologous DNA repair by the Cas9 nuclease. Delivery of the CRISPR-Cas9 and target donor vectors in human pluripotent stem cells can be accomplished via viral and nonviral delivery methods. Nonviral delivery includes lipid-mediated transfection and electroporation. It has become the most common and efficient in vitro delivery method for human pluripotent stem cells. The CRISPR-Cas9 system can be combined with inducible pluripotent stem cells to generate single or multiple gene knockouts, correct mutations, or insert reporter transgenes. Knockouts can also be utilized to investigate epigenetic roles and targets, such as investigation of DNA methylation. CRISPR could be combined with human pluripotent stem cells to explore genetic determinants of lineage choice, differentiation, and stem cell fate, allowing investigators to study how various genes or noncoding elements contribute to specific processes and pathways. The CRISPR-Cas9 system can also be used to create null or nucleasedead Cas9, which has no enzymatic activity but has been utilized through fusion with other functional protein domains. In conclusion, RNA-guided genome targeting will have broad implications for synthetic biology, direct perturbation of gene networks, and targeted ex vivo and in vivo gene therapy.
为避免胚胎干细胞的伦理问题,基因组工程已聚焦于诱导多能干细胞,这种细胞可发育成所有三个胚层。检测这些细胞中甲基化模式的能力有助于对多能性标志物进行研究。最近开发的CRISPR系统使基因组工程技术得到了广泛应用。CRISPR-Cas9系统是一种强大的基因组编辑系统,可通过用所需的供体序列替换目标基因序列来进行基因敲除或基因插入基因组操作。可启动两种类型的基因组工程:由Cas9核酸酶进行同源或非同源DNA修复。在人多能干细胞中递送CRISPR-Cas9和目标供体载体可通过病毒和非病毒递送方法来完成。非病毒递送包括脂质介导的转染和电穿孔。它已成为人多能干细胞最常用且高效的体外递送方法。CRISPR-Cas9系统可与诱导多能干细胞相结合,以产生单基因或多基因敲除、纠正突变或插入报告转基因。敲除也可用于研究表观遗传作用和靶点,如DNA甲基化的研究。CRISPR可与人多能干细胞相结合,以探索谱系选择、分化和干细胞命运的遗传决定因素,使研究人员能够研究各种基因或非编码元件如何促成特定的过程和途径。CRISPR-Cas9系统还可用于创建无活性或核酸酶失活的Cas9,其没有酶活性,但已通过与其他功能蛋白结构域融合而得到利用。总之,RNA引导的基因组靶向将对合成生物学、基因网络的直接扰动以及靶向的离体和体内基因治疗产生广泛影响。