Suppr超能文献

应用自适应神经模糊推理系统估算肉鸡幼雏可消化关键氨基酸需要量。

Application of adaptive neuro-fuzzy inference systems to estimate digestible critical amino acid requirements in young broiler chicks.

机构信息

Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, ON, Canada.

Department of Computer Software Engineering, National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.

出版信息

Poult Sci. 2019 Aug 1;98(8):3233-3239. doi: 10.3382/ps/pez055.

Abstract

This study aimed to find the digestible lysine (d.Lys), digestible sulfur amino acids (d.SAA), and digestible threonine (d.Thr) requirements to optimize body weight gain (BWG) and feed conversion ratio (FCR) via adaptive neuro-fuzzy inference systems (ANFIS) using either the Genetic algorithm (ANFIS-GA) or Particle Swarm Optimization algorithm (ANFIS-PSO) in Cobb-500 chicks from 1 to 10 d of age. The range of amino acids was 90 to 115% of the recommendations for male Cobb-500 chicks. The estimated dietary d.Lys, d.SAA, and d.Thr requirements by ANFIS-GA and ANFIS-PSO to optimize BWG were the same and were 12.10, 8.98, and 7.89 g/kg, respectively. The optimum BWG predicted by ANFIS-GA and ANFIS-PSO were 270 and 266 g, respectively for the 1 to 10 d period. The estimated dietary requirements of d.Lys, d.SAA, and d.Thr to minimize FCR at 0.995 by ANFIS-GA were 12.10, 8.98, and 7.89 g/kg, respectively. Although the estimated d.Lys and d.SAA requirements by ANFIS-PSO and ANFIS-GA were identical, the predicted d.Thr requirement by ANFIS-PSO was 0.01 g/kg higher than by ANFIS-GA to minimize FCR at 0.963. Comparison of goodness of fit in term of root mean square error revealed that the ANFIS-GA prediction was more accurate than ANFIS-PSO. This study demonstrates that the hybrid methodology of ANFIS-GA is as an effective and accurate approach to modeling and optimizing nutrient requirements.

摘要

本研究旨在通过自适应神经模糊推理系统 (ANFIS) ,利用遗传算法 (ANFIS-GA) 或粒子群优化算法 (ANFIS-PSO) ,确定肉仔鸡(1-10 日龄)的可消化赖氨酸(d.Lys)、可消化含硫氨基酸(d.SAA)和可消化苏氨酸(d.Thr)需要量,以优化体重增长(BWG)和饲料转化率(FCR)。氨基酸的范围为雄性科布 500 只小鸡推荐量的 90%至 115%。通过 ANFIS-GA 和 ANFIS-PSO 估算的优化 BWG 的饲粮 d.Lys、d.SAA 和 d.Thr 需要量分别为 12.10、8.98 和 7.89g/kg。ANFIS-GA 和 ANFIS-PSO 预测的最佳 BWG 分别为 1 至 10 日龄的 270 和 266g。通过 ANFIS-GA 使 FCR 达到 0.995 的饲粮 d.Lys、d.SAA 和 d.Thr 最低需要量分别为 12.10、8.98 和 7.89g/kg。虽然 ANFIS-PSO 和 ANFIS-GA 估算的 d.Lys 和 d.SAA 需要量相同,但 ANFIS-PSO 预测的 d.Thr 需要量比 ANFIS-GA 高 0.01g/kg,以达到 0.963 的最低 FCR。基于均方根误差的拟合优度比较表明,ANFIS-GA 的预测更准确。本研究表明,ANFIS-GA 的混合方法是一种有效的、准确的建模和优化营养需求的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验