Suppr超能文献

11 至 17 日龄可消化蛋白和必需氨基酸水平变化饲粮对肉鸡生产性能的响应面和神经网络模型。

Response surface and neural network models for performance of broiler chicks fed diets varying in digestible protein and critical amino acids from 11 to 17 days of age.

机构信息

Center of Excellence in the Animal Sciences Department, Ferdowsi University of Mashhad, Mashhad, Iran.

出版信息

Poult Sci. 2011 Sep;90(9):2085-96. doi: 10.3382/ps.2011-01367.

Abstract

Central composite design (CCD; 5 levels and 4 factors), response surface methodology (RSM), and artificial neural network-genetic algorithm (ANN-GA) were used to evaluate the response of broiler chicks [ADG and feed conversion ratio (FCR)] to dietary standardized ileal digestible protein (dP), lysine (dLys), total sulfur amino acids (dTSAA), and threonine (dThr). A total of 84 battery brooder units of 5 birds each were assigned to 28 diets of CCD containing 5 levels of dP (18-22%), dLys (1.06-1.30%), dTSAA (0.81-1.01%), and dThr (0.66-0.86%) from 11 to 17 d of age. The experimental results of CCD were fitted with the quadratic and artificial neural network models. A ridge analysis (for RSM models) and a genetic algorithm (for ANN-GA models) were used to compute the optimal response for ADG and FCR. For both ADG and FCR, the goodness of fit in terms of R(2) and MS error corresponding to ANN-GA and RSM models showed a substantially higher accuracy of prediction for ANN models (ADG model: R(2) = 0.99; FCR model: R(2) = 0.97) compared with RSM models (ADG model: R(2) = 0.70; FCR model: R(2) = 0.71). The ridge maximum analysis on ADG and minimum analysis on FCR models revealed that the maximum ADG may be obtained with 18.5, 1.10, 0.89, and 0.73% dP, dLys, dTSAA, and dThr, respectively, in diet, and minimum FCR may be obtained with 19.44, 1.18, 0.90, and 0.75% of dP, dLys, dTSAA, and dThr, respectively, in diet. The optimization results of ANN-GA models showed the maximum ADG may be achieved with 19.93, 1.06, 0.90, and 0.76% of dP, dLys, dTSAA, and dThr, respectively, in diet, and minimum FCR may be achieved with 18.63, 1.26, 0.84, and 0.69% of dP, dLys, dTSAA, and dThr, respectively, in diet. The results of this study revealed that the platform of CCD (for conducting growth trials with minimum treatments), RSM model, and ANN-GA (for experimental data modeling and optimization) may be used to describe the relationship between dietary nutrient concentrations and broiler performance to achieve the optimal target.

摘要

采用中心组合设计(CCD;5 个水平和 4 个因素)、响应面法(RSM)和人工神经网络-遗传算法(ANN-GA)来评估肉鸡[ADG 和饲料转化率(FCR)]对日粮可消化真蛋白(dP)、赖氨酸(dLys)、总硫氨基酸(dTSAA)和苏氨酸(dThr)的反应。共有 84 个电池育雏器,每个育雏器有 5 只鸡,分为 28 个 CCD 日粮,11-17 日龄时日粮中 dP(18-22%)、dLys(1.06-1.30%)、dTSAA(0.81-1.01%)和 dThr(0.66-0.86%)有 5 个水平。CCD 的实验结果与二次和人工神经网络模型拟合。使用岭分析(用于 RSM 模型)和遗传算法(用于 ANN-GA 模型)计算 ADG 和 FCR 的最佳反应。对于 ADG 和 FCR,ANN-GA 和 RSM 模型的 R(2)和 MS 误差表示拟合优度,ANN 模型的预测精度明显高于 RSM 模型(ADG 模型:R(2)=0.99;FCR 模型:R(2)=0.97)。ADG 的岭最大分析和 FCR 模型的最小分析表明,日粮中 dP、dLys、dTSAA 和 dThr 的最大 ADG 可能分别为 18.5%、1.10%、0.89%和 0.73%,最小 FCR 可能分别为 19.44%、1.18%、0.90%和 0.75%。ANN-GA 模型的优化结果表明,日粮中 dP、dLys、dTSAA 和 dThr 的最大 ADG 可能分别为 19.93%、1.06%、0.90%和 0.76%,最小 FCR 可能分别为 18.63%、1.26%、0.84%和 0.69%。这项研究的结果表明,CCD 平台(用于进行最少处理的生长试验)、RSM 模型和 ANN-GA(用于实验数据建模和优化)可用于描述日粮营养浓度与肉鸡性能之间的关系,以达到最佳目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验