Suppr超能文献

女性影像学及其他领域机器学习中的数据工程

Data Engineering for Machine Learning in Women's Imaging and Beyond.

作者信息

Cui Chen, Chou Shinn-Huey S, Brattain Laura, Lehman Constance D, Samir Anthony E

机构信息

Center for Ultrasound Research & Translation, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114.

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA.

出版信息

AJR Am J Roentgenol. 2019 Jul;213(1):216-226. doi: 10.2214/AJR.18.20464. Epub 2019 Feb 19.

Abstract

Data engineering is the foundation of effective machine learning model development and research. The accuracy and clinical utility of machine learning models fundamentally depend on the quality of the data used for model development. This article aims to provide radiologists and radiology researchers with an understanding of the core elements of data preparation for machine learning research. We cover key concepts from an engineering perspective, including databases, data integrity, and characteristics of data suitable for machine learning projects, and from a clinical perspective, including the HIPAA, patient consent, avoidance of bias, and ethical concerns related to the potential to magnify health disparities. The focus of this article is women's imaging; nonetheless, the principles described apply to all domains of medical imaging. Machine learning research is inherently interdisciplinary: effective collaboration is critical for success. In medical imaging, radiologists possess knowledge essential for data engineers to develop useful datasets for machine learning model development.

摘要

数据工程是有效开展机器学习模型开发与研究的基础。机器学习模型的准确性和临床实用性从根本上取决于用于模型开发的数据质量。本文旨在让放射科医生和放射学研究人员了解机器学习研究数据准备的核心要素。我们从工程学角度涵盖关键概念,包括数据库、数据完整性以及适用于机器学习项目的数据特征,从临床角度涵盖《健康保险流通与责任法案》(HIPAA)、患者同意、避免偏差以及与放大健康差距可能性相关的伦理问题。本文重点关注女性成像;尽管如此,所描述的原则适用于医学成像的所有领域。机器学习研究本质上是跨学科的:有效的协作对于成功至关重要。在医学成像领域,放射科医生拥有的数据工程师为机器学习模型开发构建有用数据集所必需的知识。

相似文献

1
Data Engineering for Machine Learning in Women's Imaging and Beyond.女性影像学及其他领域机器学习中的数据工程
AJR Am J Roentgenol. 2019 Jul;213(1):216-226. doi: 10.2214/AJR.18.20464. Epub 2019 Feb 19.
3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
Artificial intelligence 101 for veterinary diagnostic imaging.兽医诊断成像人工智能基础
Vet Radiol Ultrasound. 2022 Dec;63 Suppl 1:817-827. doi: 10.1111/vru.13160.
10
Artificial intelligence applications for thoracic imaging.人工智能在胸部成像中的应用。
Eur J Radiol. 2020 Feb;123:108774. doi: 10.1016/j.ejrad.2019.108774. Epub 2019 Dec 11.

本文引用的文献

2
Ethics, Artificial Intelligence, and Radiology.伦理学、人工智能与放射学。
J Am Coll Radiol. 2018 Sep;15(9):1317-1319. doi: 10.1016/j.jacr.2018.05.020. Epub 2018 Jul 14.
9
Deep Convolutional Neural Networks for breast cancer screening.深度学习卷积神经网络在乳腺癌筛查中的应用。
Comput Methods Programs Biomed. 2018 Apr;157:19-30. doi: 10.1016/j.cmpb.2018.01.011. Epub 2018 Jan 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验