Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin, Republic of Korea.
School of Mechanical Engineering, Sungkyunkwan University, Republic of Korea.
Comput Methods Programs Biomed. 2018 Apr;157:85-94. doi: 10.1016/j.cmpb.2018.01.017. Epub 2018 Jan 31.
Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel Computer-Aided Diagnosis (CAD) system based on one of the regional deep learning techniques, a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Although most previous studies only deal with classification of masses, our proposed YOLO-based CAD system can handle detection and classification simultaneously in one framework.
The proposed CAD system contains four main stages: preprocessing of mammograms, feature extraction utilizing deep convolutional networks, mass detection with confidence, and finally mass classification using Fully Connected Neural Networks (FC-NNs). In this study, we utilized original 600 mammograms from Digital Database for Screening Mammography (DDSM) and their augmented mammograms of 2,400 with the information of the masses and their types in training and testing our CAD. The trained YOLO-based CAD system detects the masses and then classifies their types into benign or malignant.
Our results with five-fold cross validation tests show that the proposed CAD system detects the mass location with an overall accuracy of 99.7%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 97%.
Our proposed system even works on some challenging breast cancer cases where the masses exist over the pectoral muscles or dense regions.
自动检测和分类乳腺 X 光片中的肿块仍然是一个巨大的挑战,对于协助放射科医生进行准确诊断起着至关重要的作用。在本文中,我们提出了一种新的基于区域深度学习技术的计算机辅助诊断(CAD)系统,该系统基于一种称为“只看一次”(YOLO)的 ROI 卷积神经网络(CNN)。尽管大多数先前的研究仅涉及肿块的分类,但我们提出的基于 YOLO 的 CAD 系统可以在一个框架中同时处理检测和分类。
所提出的 CAD 系统包含四个主要阶段:乳腺 X 光片的预处理、利用深度卷积网络进行特征提取、利用置信度进行肿块检测,以及最后利用全连接神经网络(FC-NNs)进行肿块分类。在这项研究中,我们利用原始的 600 张来自数字筛查乳腺数据库(DDSM)的乳腺 X 光片及其 2400 张增强乳腺 X 光片,在训练和测试我们的 CAD 时利用这些乳腺 X 光片的信息来检测和分类肿块。经过训练的基于 YOLO 的 CAD 系统可以检测肿块,并将其类型分为良性或恶性。
我们的五重交叉验证测试结果表明,所提出的 CAD 系统可以以 99.7%的总体准确率检测到肿块的位置。该系统还可以以 97%的总体准确率区分良性和恶性病变。
即使在一些具有挑战性的乳腺癌病例中,我们的系统也能在肿块存在于胸肌或密集区域的情况下工作。