Complex Systems Group & GISC, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain.
Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain.
Phys Rev E. 2019 Jan;99(1-1):012310. doi: 10.1103/PhysRevE.99.012310.
We explore the relation between the topological relevance of a node in a complex network and the individual dynamics it exhibits. When the system is weakly coupled, the effect of the coupling strength against the dynamical complexity of the nodes is found to be a function of their topological roles, with nodes of higher degree displaying lower levels of complexity. We provide several examples of theoretical models of chaotic oscillators, pulse-coupled neurons, and experimental networks of nonlinear electronic circuits evidencing such a hierarchical behavior. Importantly, our results imply that it is possible to infer the degree distribution of a network only from individual dynamical measurements.
我们探讨了复杂网络中节点的拓扑相关性与其表现出的个体动力学之间的关系。当系统弱耦合时,发现耦合强度对节点动态复杂性的影响是节点拓扑角色的函数,具有较高度数的节点表现出较低水平的复杂性。我们提供了几个理论模型的示例,包括混沌振荡器、脉冲耦合神经元和非线性电子电路的实验网络,这些模型都证明了这种分层行为。重要的是,我们的结果表明,仅从个体动力学测量就可以推断网络的度分布。