Almendral Juan A, Leyva I, Sendiña-Nadal Irene
Complex Systems Group & Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain.
Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain.
Entropy (Basel). 2023 Jul 18;25(7):1079. doi: 10.3390/e25071079.
Ordinal measures provide a valuable collection of tools for analyzing correlated data series. However, using these methods to understand information interchange in the networks of dynamical systems, and uncover the interplay between dynamics and structure during the synchronization process, remains relatively unexplored. Here, we compare the ordinal permutation entropy, a standard complexity measure in the literature, and the permutation entropy of the ordinal transition probability matrix that describes the transitions between the ordinal patterns derived from a time series. We find that the permutation entropy based on the ordinal transition matrix outperforms the rest of the tested measures in discriminating the topological role of networked chaotic Rössler systems. Since the method is based on permutation entropy measures, it can be applied to arbitrary real-world time series exhibiting correlations originating from an existing underlying unknown network structure. In particular, we show the effectiveness of our method using experimental datasets of networks of nonlinear oscillators.
序数测量为分析相关数据序列提供了一系列有价值的工具。然而,利用这些方法来理解动态系统网络中的信息交换,并揭示同步过程中动力学与结构之间的相互作用,仍相对未被探索。在此,我们比较了文献中的一种标准复杂性度量——序数排列熵,以及描述从时间序列导出的序数模式之间转换的序数转移概率矩阵的排列熵。我们发现,基于序数转移矩阵的排列熵在区分网络化混沌罗塞尔系统的拓扑作用方面优于其他测试度量。由于该方法基于排列熵度量,它可应用于呈现源自现有潜在未知网络结构的相关性的任意真实世界时间序列。特别是,我们使用非线性振荡器网络的实验数据集展示了我们方法的有效性。