Marian Smoluchowski Institute of Physics, and Mark Kac Center for Complex Systems Research, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Kraków, Poland.
Phys Rev E. 2019 Jan;99(1-1):012125. doi: 10.1103/PhysRevE.99.012125.
This paper discusses analytical and numerical results for nonharmonic, undamped, single-well, stochastic oscillators driven by additive noises. It focuses on average kinetic, potential, and total energies together with the corresponding distributions under random drivings, involving Gaussian white, Ornstein-Uhlenbeck, and Markovian dichotomous noises. It demonstrates that insensitivity of the average total energy to the single-well potential type, V(x)∝x^{2n}, under Gaussian white noise does not extend to other noise types. Nevertheless, in the long-time limit (t→∞), the average energies grow as power law with exponents dependent on the steepness of the potential n. Another special limit corresponds to n→∞, i.e., to the infinite rectangular potential well, when the average total energy grows as a power law with the same exponent for all considered noise types.
本文讨论了由加性噪声驱动的非谐波、无阻尼、单阱、随机振荡器的分析和数值结果。重点研究了在随机驱动下平均动能、位能和总能量以及相应的分布,涉及高斯白噪声、Ornstein-Uhlenbeck 噪声和 Markovian 二项式噪声。结果表明,在高斯白噪声下,平均总能量对单阱势 V(x)∝x^{2n}的不敏感性并不扩展到其他噪声类型。然而,在长时间极限(t→∞)下,平均能量随着幂律增长,幂指数取决于势的陡峭程度 n。另一个特殊极限对应于 n→∞,即无限矩形势阱,此时平均总能量对于所有考虑的噪声类型都以相同的幂指数随幂律增长。