Departamento de Física, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil.
Departamento de Física, Universidade Tecnológica Federal do Paraná, Apucarana, PR 86812-460, Brazil.
Phys Rev E. 2019 Jan;99(1-1):013311. doi: 10.1103/PhysRevE.99.013311.
Imaging techniques are essential tools for inquiring a number of properties from different materials. Liquid crystals are often investigated via optical and image processing methods. In spite of that, considerably less attention has been paid to the problem of extracting physical properties of liquid crystals directly from textures images of these materials. Here we present an approach that combines two physics-inspired image quantifiers (permutation entropy and statistical complexity) with machine learning techniques for extracting physical properties of nematic and cholesteric liquid crystals directly from their textures images. We demonstrate the usefulness and accuracy of our approach in a series of applications involving simulated and experimental textures, in which physical properties of these materials (namely: average order parameter, sample temperature, and cholesteric pitch length) are predicted with significant precision. Finally, we believe our approach can be useful in more complex liquid crystal experiments as well as for probing physical properties of other materials that are investigated via imaging techniques.
成像技术是探究不同材料多种性质的重要工具。液晶通常通过光学和图像处理方法进行研究。尽管如此,人们对直接从这些材料的纹理图像中提取液晶物理性质的问题关注甚少。在这里,我们提出了一种方法,该方法结合了两种受物理启发的图像量化器(排列熵和统计复杂度)以及机器学习技术,可直接从向列相和胆甾相液晶的纹理图像中提取物理性质。我们在一系列涉及模拟和实验纹理的应用中展示了我们方法的有用性和准确性,其中这些材料的物理性质(即平均有序参数、样品温度和胆甾相螺距长度)被精确地预测。最后,我们相信我们的方法可以应用于更复杂的液晶实验以及通过成像技术研究的其他材料的物理性质探测。