Henderson Donna, Williams Christopher J, Miller Jeffrey S
University of Idaho, Aberdeen Research and Extension Center, Aberdeen 83210.
University of Idaho, Department of Statistics, Moscow 83844.
Plant Dis. 2007 Aug;91(8):951-956. doi: 10.1094/PDIS-91-8-0951.
Previously published late blight forecasts which predict the threat of disease based on the presence or absence of favorable weather have not been effective in semi-arid potato-producing areas of the Pacific Northwest (Idaho, Oregon, and Washington). Research was conducted to identify weather variables useful for forecasting late blight in southern Idaho. The objectives of this research were to (i) determine if regional weather variables could be related to the occurrence of late blight in southern Idaho, (ii) determine if disease severity (scale of 0 to 4) could be predicted using variables found to be correlated with the annual occurrence of late blight, and (iii) validate the efficacy of this model in predicting disease incidence in regions of the Columbia Basin. Weather data were collected from five locations over a 9-year period (1995 to 2003). A binary logistic regression model (0 = no disease and 1 = disease) indicated that the number of hours with favorable conditions (10°C ≤ temperature ≤ 27°C, relative humidity ≥ 80%) in April and May (HF80m) was a significant disease predictor. Logistic regression analysis using an ordinal disease scale (0 = no disease and 4 = severe disease) indicated amount of precipitation (APj) and favorable hours (HF80j) with extended periods from April to June as significant disease predictors. The binary model predicted disease occurrence more accurately, with 67.5% accuracy (27/40 years correctly predicted), 75% sensitivity (12/16 late-blight years predicted), and 62.5% specificity (15/24 non-late-blight years predicted) using a leave-1-year-out error estimate. The binary model was validated with data (1995 to 2003) from the semi-arid Columbia Basin regions, predicting disease with 80.8% accuracy (21/26 years predicted), 84% sensitivity (21/25 outbreak years predicted), and 0% specificity (0/1 non-outbreak years predicted).
先前发布的晚疫病预测是基于有利天气的有无来预测病害威胁的,但在太平洋西北地区(爱达荷州、俄勒冈州和华盛顿州)的半干旱马铃薯产区却效果不佳。开展了相关研究,以确定对爱达荷州南部晚疫病预测有用的气象变量。本研究的目标是:(i)确定区域气象变量是否与爱达荷州南部晚疫病的发生有关;(ii)确定是否可以使用与晚疫病年发生情况相关的变量来预测病害严重程度(0至4级);(iii)验证该模型在预测哥伦比亚河流域各地区病害发生率方面的有效性。在九年期间(1995年至2003年)从五个地点收集了气象数据。二元逻辑回归模型(0 = 无病害,1 = 有病害)表明,4月和5月适宜条件(10°C≤温度≤27°C,相对湿度≥80%)的小时数(HF80m)是病害的一个重要预测指标。使用序数病害等级(0 = 无病害,4 = 严重病害)进行的逻辑回归分析表明,4月至6月期间的降水量(APj)和适宜小时数(HF80j)是病害的重要预测指标。二元模型对病害发生的预测更为准确,采用留一法误差估计时,准确率为67.5%(40年中27年预测正确),灵敏度为75%(16个晚疫病年份中12年预测正确),特异度为62.5%(24个非晚疫病年份中15年预测正确)。该二元模型通过半干旱哥伦比亚河流域地区的数据(1995年至2003年)进行了验证,预测病害的准确率为80.8%(26年中21年预测正确),灵敏度为84%(25个暴发年份中21年预测正确),特异度为0%(1个非暴发年份中0年预测正确)。