CINVESTAV-Tamaulipas, Ciudad Victoria C.P. 87130 Tamaulipas, Mexico.
Tecnologico de Monterrey, School of Engineering and Sciences, Campus Puebla, Av. Atlixcayotl 5718, Puebla C.P. 72453 Puebla, Mexico.
Sensors (Basel). 2019 Feb 18;19(4):832. doi: 10.3390/s19040832.
Mobile Edge Computing (MEC) relates to the deployment of decision-making processes at the network edge or mobile devices rather than in a centralized network entity like the cloud. This paradigm shift is acknowledged as one key pillar to enable autonomous operation and self-awareness in mobile devices in IoT. Under this paradigm, we focus on mobility-based services (MBSs), where mobile devices are expected to perform energy-efficient GPS data acquisition while also providing location accuracy. We rely on a fully on-device Cognitive Dynamic Systems (CDS) platform to propose and evaluate a cognitive controller aimed at both tackling the presence of uncertainties and exploiting the mobility information learned by such CDS toward energy-efficient and accurate location tracking via mobility-aware sampling policies. We performed a set of experiments and validated that the proposed control strategy outperformed similar approaches in terms of energy savings and spatio-temporal accuracy in LBS and MBS for smartphone devices.
移动边缘计算(MEC)涉及在网络边缘或移动设备上部署决策过程,而不是在像云这样的集中式网络实体中。这种范式转变被认为是实现物联网中移动设备自主运行和自我意识的关键支柱之一。在这种范式下,我们专注于基于移动性的服务(MBS),移动设备预计将在提供位置精度的同时执行节能的 GPS 数据采集。我们依赖于全设备认知动态系统(CDS)平台来提出和评估一个认知控制器,旨在应对不确定性的存在,并利用这种 CDS 所学到的移动性信息,通过移动感知采样策略实现节能和准确的位置跟踪。我们进行了一组实验,并验证了所提出的控制策略在智能手机设备的基于位置的服务(LBS)和基于移动性的服务(MBS)中在节能和时空精度方面优于类似方法。